Question #186449

Find the following limit

Lim x tengs to 0 1-cos x^2/x^2 sin x^2


1
Expert's answer
2021-05-07T09:13:04-0400

Solution: Let L=limx01cos x2x2 sin x2This is indeterminant form.Therefore we apply LHospital Rule to Solve this limit.Apply LHospitals Rule L=limx02x.sin x22x.sin x2+2x3 cos x2        =limx02x.sin x22x(sin x2+x2 cos x2)        =limx0sin x2sin x2+x2 cos x2which is again indeterminant form.Therefore we again apply LHospital Rule.L=limx02x cos x24x cos x22x3 sin x2        =limx02x cos x22x (2 cos x2x2 sin x2)        =limx0cos x22 cos x2x2 sin x2Now put the limit x=0L=limx0cos 022 cos 0202 sin 02=12limx01cos x2x2 sin x2=12Solution:~ Let~L=\lim_{x\to 0} \frac{1- cos~ x^2 }{x^2 ~sin ~x^2} \\This ~is ~ indeterminant ~form.Therefore~we~apply~L'Hospital ~Rule ~to ~Solve~this ~limit. \\\therefore Apply~L'Hospitals ~Rule \\\therefore~L= \lim_{x\to 0} \frac{2x.sin~ x^2 }{2x.sin~ x^2+2x^3 ~cos ~x^2} \\~~~~~~~~= \lim_{x\to 0} \frac{2x.sin~ x^2 }{2x(sin~ x^2+x^2 ~cos ~x^2)} \\~~~~~~~~= \lim_{x\to 0} \frac{sin~ x^2 }{sin~ x^2+x^2 ~cos ~x^2} \\ which ~is ~again ~ indeterminant ~form. Therefore~we~again~apply ~L'Hospital ~Rule. \\\therefore L=\lim_{x\to 0} \frac{2x ~cos~ x^2 }{4x~cos~ x^2-2x^3 ~sin ~x^2} \\~~~~~~~~=\lim_{x\to 0} \frac{2x ~cos~ x^2 }{2x~(2~cos~ x^2-x^2 ~sin ~x^2)} \\~~~~~~~~=\lim_{x\to 0} \frac{cos~ x^2 }{2~cos~ x^2-x^2 ~sin ~x^2} \\Now ~put ~the ~limit ~x=0 \\\therefore L=\lim_{x\to 0} \frac{cos~ 0^2 }{2~cos~ 0^2-0^2 ~sin ~0^2}=\frac{1}{2} \\\lim_{x\to 0} \frac{1- cos~ x^2 }{x^2 ~sin ~x^2}=\frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS