Solution: Let L=limx→0x2 sin x21−cos x2This is indeterminant form.Therefore we apply L′Hospital Rule to Solve this limit.∴Apply L′Hospitals Rule∴ L=limx→02x.sin x2+2x3 cos x22x.sin x2 =limx→02x(sin x2+x2 cos x2)2x.sin x2 =limx→0sin x2+x2 cos x2sin x2which is again indeterminant form.Therefore we again apply L′Hospital Rule.∴L=limx→04x cos x2−2x3 sin x22x cos x2 =limx→02x (2 cos x2−x2 sin x2)2x cos x2 =limx→02 cos x2−x2 sin x2cos x2Now put the limit x=0∴L=limx→02 cos 02−02 sin 02cos 02=21limx→0x2 sin x21−cos x2=21
Comments