Question #182622

If πœ™(x, y) = 0, show that the determinant

|

fxx + λϕxx

fxy + λϕxy

Ο•x

fxy + λϕxy

fyy + λϕyy

Ο•y

Ο•x

Ο•y


|

where πœ† is Lagrange’s multiplier, is positive, in case the function attains a maximum.


1
Expert's answer
2021-05-11T12:16:12-0400

∣fxx+λϕxxfxy+λϕxyΟ•xfxy+λϕxyfyy+λϕyyΟ•yΟ•xΟ•y0∣\begin{vmatrix} f_{xx}+\lambda \phi_{xx} & f_{xy}+\lambda \phi_{xy} & \phi_x \\ f_{xy}+\lambda \phi_{xy} & f_{yy}+\lambda \phi_{yy} & \phi_y \\ \phi_x & \phi_y & 0 \end{vmatrix}

det⁑(fxx+λϕxxfxy+λϕxyΟ•xfxy+λϕxyfyy+λϕyyΟ•yΟ•xhi)=fxx+λϕxxβ‹…det⁑(fyy+λϕyyΟ•yΟ•y0)βˆ’fxy+λϕxyβ‹…det⁑(fxy+λϕyΟ•x0)+Ο•xβ‹…det⁑(fxy+Ξ»fyy+λϕyyΟ•xΟ•y)\det \begin{pmatrix} f_{xx}+\lambda \phi_{xx} & f_{xy}+\lambda \phi_{xy} & \phi_x\\ f_{xy}+\lambda \phi_{xy}& f_{yy}+\lambda \phi_{yy} & \phi_y \\ \phi_x&h&i\end{pmatrix}=f_{xx}+\lambda \phi_{xx} \cdot \det \begin{pmatrix} f_{yy}+\lambda \phi_{yy} &\phi_y\\ \phi_y&0\end{pmatrix}-f_{xy}+\lambda \phi_{xy}\cdot \det \begin{pmatrix}f_{xy}+\lambda&\phi_y\\ \phi_x &0\end{pmatrix}+\phi_x\cdot \det \begin{pmatrix}f_{xy}+\lambda& f_{yy}+\lambda \phi_{yy}\\ \phi_x&\phi_y\end{pmatrix}

[fxx+λϕxxβ‹…(βˆ’Ο•y2)]βˆ’[fxy+λϕxyβ‹…(βˆ’Ο•xΟ•y)]+[Ο•xβ‹…(Ο•y)(fxy+Ξ»xy)βˆ’(Ο•y)(fyy+Ξ»yy)][f_{xx}+\lambda \phi_{xx} \cdot (-\phi_y ^2)]-[f_{xy}+\lambda \phi_{xy}\cdot (-\phi_x\phi_y) ]+[\phi_x\cdot (\phi_{y})(f_{xy}+\lambda_{xy})-(\phi_{y})(f_{yy}+\lambda_{yy})]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS