Question #177952

Suppose that 𝛽 > 0 and that ℎ ∈ 𝑅[−𝛽, 𝛽]. 1) If ℎ is even, show that t ∫ h(integration limit from [−𝛽, 𝛽]) = 2 ∫ h(integration limit from [0, 𝛽])


1
Expert's answer
2021-04-15T07:39:34-0400

We should prove that for even function h

ββh(t)dt=20βh(t)dt.\int\limits_{-\beta}^{\beta} h(t)\,dt= 2\int \limits_{0}^{\beta} h(t)\,dt.

We know that h(-x)=h(x).


Let us divide the integral into two parts:

ββh(t)dt=β0h(t)dt+0βh(t)dt\int\limits_{-\beta}^{\beta} h(t)\,dt= \int\limits_{-\beta}^{0} h(t)\,dt + \int\limits_{0}^{\beta} h(t)\,dt .

We may see that the first integral may be transformed

β0h(t)dt=x=t=β0h(x)dx=β0h(x)dx\int\limits_{-\beta}^{0} h(t)\,dt = \Big| x = -t \Big| = -\int\limits_{\beta}^{0} h(-x)\,dx = -\int\limits_{\beta}^{0} h(x)\,dx because h(-x)=h(x).

And β0h(x)dx=0βh(x)dx-\int\limits_{\beta}^{0} h(x)\,dx = \int\limits_{0}^{\beta} h(x)\,dx .

Therefore, ββh(t)dt=0βh(x)dx+0βh(t)dt=20βh(t)dt\int\limits_{-\beta}^{\beta} h(t)\,dt= \int\limits_{0}^{\beta} h(x)\,dx + \int\limits_{0}^{\beta} h(t)\,dt = 2\int\limits_{0}^{\beta} h(t)\,dt .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS