We should prove that for even function h
−β∫βh(t)dt=20∫βh(t)dt.
We know that h(-x)=h(x).
Let us divide the integral into two parts:
−β∫βh(t)dt=−β∫0h(t)dt+0∫βh(t)dt .
We may see that the first integral may be transformed
−β∫0h(t)dt=∣∣x=−t∣∣=−β∫0h(−x)dx=−β∫0h(x)dx because h(-x)=h(x).
And −β∫0h(x)dx=0∫βh(x)dx .
Therefore, −β∫βh(t)dt=0∫βh(x)dx+0∫βh(t)dt=20∫βh(t)dt .
Comments