Question #177817

The limit: limit x→0^+ (xcosecx)^x does not exist

True or false with full explanation



1
Expert's answer
2021-04-13T13:37:09-0400

Let us show that the limit limx0+(xcosecx)x\lim\limits_{ x\to 0^+} (x\cosec x)^x exists.

Since limx0sinxx=1,\lim\limits_{ x\to 0} \frac{\sin x}{x}=1, we conclude that

limx0+(xcosecx)x=limx0+(xsinx)x=limx0+(sinxx)x=10=1\lim\limits_{ x\to 0^+} (x\cosec x)^x=\lim\limits_{ x\to 0^+} (\frac{x}{\sin x})^x= \lim\limits_{ x\to 0^+} (\frac{\sin x}{ x})^{-x}=1^0=1


Answer: false


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS