The limit: limit x→0^+ (xcosecx)^x does not exist
True or false with full explanation
Let us show that the limit limx→0+(xcosecx)x\lim\limits_{ x\to 0^+} (x\cosec x)^xx→0+lim(xcosecx)x exists.
Since limx→0sinxx=1,\lim\limits_{ x\to 0} \frac{\sin x}{x}=1,x→0limxsinx=1, we conclude that
limx→0+(xcosecx)x=limx→0+(xsinx)x=limx→0+(sinxx)−x=10=1\lim\limits_{ x\to 0^+} (x\cosec x)^x=\lim\limits_{ x\to 0^+} (\frac{x}{\sin x})^x= \lim\limits_{ x\to 0^+} (\frac{\sin x}{ x})^{-x}=1^0=1x→0+lim(xcosecx)x=x→0+lim(sinxx)x=x→0+lim(xsinx)−x=10=1
Answer: false
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments