Question #177468

Give an example of a divergent sequence which has two convergent sequences. Justify

your claim.


1
Expert's answer
2021-04-29T17:35:34-0400

Example of a divergent sequence which has two convergent sequences.


Let's consider the sequences xn={0if nodd1if nevenx_n = \begin{cases} 0 &\text{if } n-odd \\ 1 &\text{if } n-even \end{cases} and yn={1if nodd0if neveny_n = \begin{cases} 1 &\text{if } n-odd \\ 0 &\text{if } n-even \end{cases}



Since the subsequences x2k=1k1x_{2k}=1_{k\to\infty}\to1 and x2k1=0k0x_{2k-1}=0_{k\to\infty}\to0 have different limit points, then the sequence xn={0if nodd1if nevenx_n = \begin{cases} 0 &\text{if } n-odd \\ 1 &\text{if } n-even \end{cases} is divergent.


Since the subsequences y2k=1k1y_{2k}=1_{k\to\infty}\to1 and y2k1=0k0y_{2k-1}=0_{k\to\infty}\to0 have different limit points, then the sequence yn={1if nodd0if neveny_n = \begin{cases} 1 &\text{if } n-odd \\ 0 &\text{if } n-even \end{cases} is divergent.


Now, we can consider the sum of those sequences:

xn+yn={1if nodd1if neven=1n1,x_n+y_n = \begin{cases} 1 &\text{if } n-odd \\ 1 &\text{if } n-even \end{cases}= 1_{n\to \infty}\to1, Hence the sequence (xn+yn)(x_n+y_n) is convergent.


And also, we can consider the product of those sequences:

xn×yn={0if nodd0if neven=1n1,x_n\times y_n = \begin{cases} 0 &\text{if } n-odd \\ 0 &\text{if } n-even \end{cases}= 1_{n\to \infty}\to1, Hence the sequence (xn×yn)(x_n\times y_n) is convergent.


Final Answer: xn={0if nodd1if nevenx_n = \begin{cases} 0 &\text{if } n-odd \\ 1 &\text{if } n-even \end{cases} , yn={1if nodd0if neveny_n = \begin{cases} 1 &\text{if } n-odd \\ 0 &\text{if } n-even \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS