The question asks to prove if L i m n → ∞ [ 1 2 n − 1 2 + 1 4 n − 2 2 + 1 6 n − 3 2 + . . . + 1 n ] = π 2 Lim_{n \to \infin}[\frac{1}{\sqrt{2n-1^2}}+\frac{1}{\sqrt{4n-2^2}}+\frac{1}{\sqrt{6n-3^2}}+...+\frac{1}{n}]=\frac{\pi}{2} L i m n → ∞ [ 2 n − 1 2 1 + 4 n − 2 2 1 + 6 n − 3 2 1 + ... + n 1 ] = 2 π
L i m n → ∞ ∑ n = 1 n 1 2 n − r 2 Lim_{n \to \infin} \sum _{n=1} ^n\frac{1}{\sqrt{2n-r^2}} L i m n → ∞ ∑ n = 1 n 2 n − r 2 1
L i m n → ∞ ∑ n = 1 n 1 n 2 r n − ( r n ) 2 Lim_{n \to \infin} \sum _{n=1} ^n\frac{1}{n\sqrt{\frac{2r}{n}- (\frac{r}{n})^2}} L i m n → ∞ ∑ n = 1 n n n 2 r − ( n r ) 2 1
r n = x \frac{r}{n}=x n r = x
∫ 0 1 1 2 x − x 2 d x = ∫ 0 1 1 1 − ( x − 1 ) 2 d x \int_0^1 \frac{1}{\sqrt{2x-x^2}}dx=\int_0^1 \frac{1}{\sqrt{1-(x-1)^2}}dx ∫ 0 1 2 x − x 2 1 d x = ∫ 0 1 1 − ( x − 1 ) 2 1 d x
Let x-1 =t, dx=dt
∫ − 1 0 d t 1 − t 2 = [ s i n − 1 t ] − 1 0 = 0 − [ − π 2 ] = π 2 \int_{-1}^0 \frac{dt}{\sqrt{1-t^2}}=[sin^{-1} t]_{-1}^0=0-[- \frac{\pi}{2}]= \frac{\pi}{2} ∫ − 1 0 1 − t 2 d t = [ s i n − 1 t ] − 1 0 = 0 − [ − 2 π ] = 2 π
Comments