Let us test the series ∑n=1∞nxn−1, x>0, for convergence using D'Alembert criterion for positive series:
n→∞limnxn−1(n+1)xn=xn→∞limnn+1=x⋅1=x
If 0<x<1 then the series is convergent. If x=1 then the series ∑n=1∞n is divergent because n→∞limn=∞=0.
Therefore, the series ∑n=1∞nxn−1, x>0, is convergent if and only if 0<x<1.
Comments