Let's show that
∀ϵ>0,∃n0=n0(ϵ)∈N:∀n,p>no∣xn+p−xn∣<ϵ
∣xn+p−xn∣=(n+p)2+n+p+11−n2+n+11<(n+p)2+2(n+p)+11−n2+2n+11=(n+p+1)21−(n+1)21
for any n and p (n,p∈N): n+p>n⇒(n+p+1)2>(n+1)2⇒(n+p+1)21<(n+1)21
Then, for any ϵ>0 ∣xn+p−xn∣<ϵ.
Thus, the given sequence is a Cauchy sequence.
Comments