Question #175367

nLet (a

Let (an) n belongs to N be any sequence. Show that limn--->∞ an= L iff for every ε > 0 there exists some N belongs to N

such that n ≥ N implies an belongs to Nε (L)


1
Expert's answer
2021-03-26T16:41:20-0400

Solution:

Let {an}\left\{a_{n}\right\} be a sequence with positive terms such that limnan=L>0\lim _{n \rightarrow \infty} a_{n}=L>0 .

 Let xx be a real number.

To prove that limnanx=Lx\lim _{n \rightarrow \infty} a_{n}^{x}=L^{x} .

Proof: Let ϵ>0\epsilon>0. Note that L<(Lx+ϵ)1/xL<\left(L^{x}+\epsilon\right)^{1 / x} and L>(Lxϵ)1/xL>\left(L^{x}-\epsilon\right)^{1 / x} .

Since limnan=L\lim _{n \rightarrow \infty} a_{n}=L , there exists some N such that nN    an<(Lx+ϵ)1/xn \geq N \implies a_{n}<\left(L^{x}+\epsilon\right)^{1 / x}

and an>(Lxϵ)1/xa_{n}>\left(L^{x}-\epsilon\right)^{1 / x}

Hence, for nNn \geq N we have anx<Lx+ϵa_{n}^{x}<L^{x}+\epsilon

and anx>Lxϵa_{n}^{x}>L^{x}-\epsilon . This shows limnanx=Lx\lim _{n \rightarrow \infty} a_{n}^{x}=L^{x} .

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS