Question #170869

State and prove weierstrass M- test


1
Expert's answer
2021-03-15T10:29:35-0400

Weierstrass M-test.

 Suppose that (fn) is a sequence of real- or complex-valued functions defined on a set A, and that

there is a sequence of non-negative numbers (Mn) satisfying

n1,xA: fn(x)Mn,{n=1Mn<.Then the seriesn=1fn(x) converges absolutely and uniformly on A{\displaystyle \forall n\geq 1,\forall x\in A:\ |f_{n}(x)|\leq M_{n},}\\ {\displaystyle \{\displaystyle \sum _{n=1}^{\infty }M_{n}<\infty .}\\ \text{Then the series}\\ {\displaystyle \sum _{n=1}^{\infty }f_{n}(x)}\\ \text{ converges absolutely and uniformly on A}


Proof


Consider the sequence of functionsSn(x)=k=1nfk(x).Since the seriesn=1MnconvergesandMn0for everyn,then by the Cauchy criterion,ε>0:N:m>n>N:k=n+1mMk<ε.For the chosen N,xA:m>n>NSm(x)Sn(x)=k=n+1mfk(x)(1)k=n+1mfk(x)k=n+1mMk<ε.(Inequality (1) follows from the triangle inequality.)The sequence Sn(x) is thus a Cauchy sequence in R or C, and by completeness, it converges to some number S(x) that depends on x. For n > N we can writeS(x)Sn(x)=limmSm(x)Sn(x)=limmSm(x)Sn(x)ε.Since N does not depend on x, this means that the sequence Sn of partial sums converges uniformly to the function S.Hence, by definition, the seriesk=1fk(x)converges uniformly.Analogously, one can prove thatk=1fk(x)converges uniformly.\text{Consider the sequence of functions}\\ {\displaystyle S_{n}(x)=\sum _{k=1}^{n}f_{k}(x).}\\ \text{Since the series} {\displaystyle \sum _{n=1}^{\infty }M_{n}} converges and Mn ≥ 0 \text{for every} n, \text{then by the Cauchy criterion},\\ {\displaystyle \forall \varepsilon >0:\exists N:\forall m>n>N:\sum _{k=n+1}^{m}M_{k}<\varepsilon .}\\ \text{For the chosen N},\\ {\displaystyle \forall x\in A:\forall m>n>N}\\ {\displaystyle \left|S_{m}(x)-S_{n}(x)\right|=\left|\sum _{k=n+1}^{m}f_{k}(x)\right|{\overset {(1)}{\leq }}\sum _{k=n+1}^{m}|f_{k}(x)|\leq \sum _{k=n+1}^{m}M_{k}<\varepsilon .}\\ \text{(Inequality (1) follows from the triangle inequality.)}\\ \text{The sequence Sn(x) is thus a Cauchy sequence in R or C, and by completeness, it converges to some number S(x) that depends on x. For n > N we can write}\\ {\displaystyle \left|S(x)-S_{n}(x)\right|=\left|\lim _{m\to \infty }S_{m}(x)-S_{n}(x)\right|=\lim _{m\to \infty }\left|S_{m}(x)-S_{n}(x)\right|\leq \varepsilon .}\\ \text{Since N does not depend on x, this means that the sequence Sn of partial sums converges uniformly to the function S}. \text{Hence, by definition, the series} {\displaystyle \sum _{k=1}^{\infty }f_{k}(x)} \text{converges uniformly}.\\ \text{Analogously, one can prove that} {\displaystyle \sum _{k=1}^{\infty }|f_{k}(x)|} \text{converges uniformly.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS