Question #169777

Show that the sequence {𝑓𝑛} where 𝑓𝑛(𝑥) = 𝑛𝑥(1 − 𝑥)

𝑛 does not converge uniformly on [0, 1].


1
Expert's answer
2021-03-08T18:44:41-0500

Show that the sequence {𝑓𝑛} where 𝑓𝑛(𝑥) = 𝑛𝑥(1 − 𝑥)𝑛 

does not converge uniformly on [0, 1].

Solution. Find the limit function f(x)=limnfn(x)=0,f(x)=\lim\limits_{n\to\infty}f_n(x)=0, where limnnx(1x)n=limnnx(1x)n=[]=limnx(1x)nln(1x)=0\lim\limits_{n\to\infty}nx(1-x)^n=\lim\limits_{n\to\infty}\frac{nx}{(1-x)^{-n}}=[\frac{\infty}{\infty}]=-\lim\limits_{n\to\infty}\frac{x(1-x)^{n}}{\ln(1-x)}=0

is found by Lopital-Bernoulli rule. According to the criterion of uniform

convergence, functional sequence fn(x)=nx(1x)nf_n(x)=nx(1-x)^n does not

converge uniformly on [0,1]. Really, limnsup0x1f(x)fn(x)=\lim\limits_{n\to\infty}\sup\limits_{0\le x\le 1}|f(x)-f_n(x)|=

limnsup0x1(nx(1x)n)=\lim\limits_{n\to\infty}\sup\limits_{0\le x\le 1}(nx(1-x)^n)= limn(11n+1)n+1=1e0.\lim\limits_{n\to\infty}(1-\frac{1}{n+1})^{n+1}=\frac{1}{e}\ne 0.

Answer: fn(x)=nx(1x)nf_n(x)=nx(1-x)^n does not converge uniformly on [0,1].


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS