Question #164476

Construct an example of a function  f(x) that is defined at every point in a closed interval and whose values at the end points have opposite signs but still f(x)=0 has no solution in the interval.



1
Expert's answer
2021-02-24T07:40:07-0500

Solution:Example 1)Let f(x)=x2+sin(x)1To apply the Intermediate Value Theorem to the equation f(x)=0 on the interval [0,π],we evaluate f(0) and f(π)f(0)=02+sin(0)1=1<0 and f(π)=π2+sin(π)1=π21>0Then by Intermediate Value Theorem,there is a solution of f(x)=0in the interval [0,π].Thus we conclude that there is a root of the function f(x)=x2+sin(x)1 in the interval [0,π]Example 2):Let f(x)=1x1x2definedon1<x<1Its values are negative for negative x,positive x,but never zero.Example 3):Let f(x)=1 if 1x0 andf(x)=1 if 0<x1Here f(x) has opposite signs at the end points while it is never zero in te interval.Solution: \\ Example~1) \\ Let~ f(x)=x^2+sin(x)-1 \\To~apply~the ~Intermediate~Value~Theorem~to~the~equation~f(x)=0~on~the~interval~[0,\pi], we ~evaluate~f(0) ~and~ f(\pi) \\f(0)=0^2 +sin(0)-1=-1<0~and~f(\pi)=\pi^2+sin(\pi)-1=\pi^2-1>0 \\Then~ by ~ Intermediate~Value~Theorem,there ~is ~ a~ solution~of~f(x)=0 \\in~the ~interval~[0,\pi]. \\Thus~ we ~conclude ~that~there~is~a ~root~of~the~function~f(x)=x^2+sin(x)-1~in~the~interval~[0,\pi] \\ \\Example ~2): \\Let~f(x)=\frac{1}{x\sqrt{1-x^2}} defined on -1<x<1 \\Its ~values ~are~negative~for~negative~x,positive~x,but~never ~zero. \\Example~3) : \\Let~f(x)=1~if~-1 \le x \le 0~and f(x)=-1~if ~0<x \le1 \\Here~f(x)~has ~opposite~signs~at~the~end~points~while~it~is~never~zero~in~te~interval.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS