Construct an example of a function f(x) that is defined at every point in a closed interval and whose values at the end points have opposite signs but still f(x)=0 has no solution in the interval.
"Solution:\n\\\\ Example~1)\n\\\\ Let~ f(x)=x^2+sin(x)-1\n\\\\To~apply~the ~Intermediate~Value~Theorem~to~the~equation~f(x)=0~on~the~interval~[0,\\pi], we ~evaluate~f(0) ~and~ f(\\pi)\n\\\\f(0)=0^2 +sin(0)-1=-1<0~and~f(\\pi)=\\pi^2+sin(\\pi)-1=\\pi^2-1>0\n\\\\Then~ by ~ Intermediate~Value~Theorem,there ~is ~ a~ solution~of~f(x)=0\n\\\\in~the ~interval~[0,\\pi].\n\\\\Thus~ we ~conclude ~that~there~is~a ~root~of~the~function~f(x)=x^2+sin(x)-1~in~the~interval~[0,\\pi]\n\\\\\n\\\\Example ~2):\n\\\\Let~f(x)=\\frac{1}{x\\sqrt{1-x^2}} defined on -1<x<1\n\\\\Its ~values ~are~negative~for~negative~x,positive~x,but~never ~zero.\n\\\\Example~3) :\n\\\\Let~f(x)=1~if~-1 \\le x \\le 0~and f(x)=-1~if ~0<x \\le1\n\\\\Here~f(x)~has ~opposite~signs~at~the~end~points~while~it~is~never~zero~in~te~interval."
Comments
Leave a comment