Option B is correctGiven a functionf:D→Ras above and an elementx0of the domainD,fis saidto be continuous at the pointx0when the following holds:For any numberϵ>0,however small,there exists some numberδ>0such that for allxin the domainoffwithx0−δ<x<x0+δ,the value off(x)satisfiesf(x0)−ε<f(x)<f(x0)+ε.Alternatively written, continuity off:D→Ratx0∈Dmeans that for everyϵ>0there exists aδ>0such that for allx∈D:∣x−x0∣<δ⇒∣f(x)−f(x0)∣<ε
Comments