Question #157250

Prove A∩(B∩C)=(A∩B)∩C


1
Expert's answer
2021-01-22T13:47:41-0500

LetxA(BC)x \in A \cap (B \cap C)

    xA\implies x \in A and xBCx \in B \cap C

    xA\implies x \in A and xBx \in B and xCx \in C

    xAB\implies x\in A \cap B and xCx \in C

    x(AB)C\implies x \in (A\cap B) \cap C

    A(BC)(AB)C\implies A\cap (B \cap C) \sub (A\cap B) \cap C

Conversely, let y(AB)Cy \in (A\cap B) \cap C

    yAB\implies y \in A \cap B and yCy \in C

    yA\implies y \in A and yBy \in B and yCy \in C

    yA\implies y\in A and yBCy\in B\cap C

    yA(BC)\implies y\in A \cap (B\cap C)

    (AB)CA(BC)\implies (A\cap B) \cap C \sub A \cap (B \cap C)

Hence, A(BC)=(AB)CA \cap (B \cap C) = (A\cap B) \cap C




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS