From the question,
We'll show that f is linear if for "A_1, A_2 \\in R^{2*2}, \\alpha, \\beta \\in R," we have that "f(\\alpha A_1+\\beta A_2)= \\alpha f(A_1)+\\beta f(A_2)" To this end,
Let "A_1= \\begin{pmatrix}\n a & b \\\\\n c & d\n\\end{pmatrix}, A_2=\\begin{pmatrix}\n e & f \\\\\n g & h\n\\end{pmatrix}\\\\\nSo, \\\\\n\\alpha A_1+ \\beta A_2= \\alpha \\begin{pmatrix}\n a & b \\\\\n c & d\n\\end{pmatrix}+ \\beta \\begin{pmatrix}\n e & f \\\\\n g & h\n\\end{pmatrix}\\\\\n\\implies\\\\\n\\alpha A_1+ \\beta A_2=\\begin{pmatrix}\n \\alpha a+ \\beta e & \\alpha b+ \\beta f\\\\\n \\alpha c +\\beta g & \\alpha a+ \\beta h\n\\end{pmatrix}\\\\\nNow, \\\\\nf(\\alpha A_1+ \\beta A_2)=(\\alpha A_1+ \\beta A_2)v\\\\\nf(\\alpha A_1+ \\beta A_2)=\n\\begin{pmatrix}\n \\alpha a+ \\beta e & \\alpha b+ \\beta f\\\\\n \\alpha c +\\beta g & \\alpha a+ \\beta h\n\\end{pmatrix}\\begin{pmatrix}\n -1 \\\\\n 2\n\\end{pmatrix}\\\\\nf(\\alpha A_1+ \\beta A_2)=\\begin{pmatrix}\n -\\alpha a- \\beta e +2 \\alpha b+2 \\beta f\\\\\n -\\alpha c -\\beta g +2 \\alpha a+2 \\beta h\n\\end{pmatrix}\\\\\nf(\\alpha A_1+ \\beta A_2)=\\begin{pmatrix}\n -\\alpha a +2 \\alpha b \\\\\n \\alpha c +2 \\alpha d\n\\end{pmatrix}+\\begin{pmatrix}\n -\\beta e +2 \\beta f \\\\\n -\\beta g +2 \\beta h\n\\end{pmatrix}\\\\\nf(\\alpha A_1+ \\beta A_2)= \\alpha\\begin{pmatrix}\n a & b \\\\\n c & d\n\\end{pmatrix}\\begin{pmatrix}\n -1 \\\\\n 2\n\\end{pmatrix}+\\beta \\begin{pmatrix}\n e & f \\\\\n g & h\n\\end{pmatrix}\\begin{pmatrix}\n -1 \\\\\n 2\n\\end{pmatrix}\\\\\nf(\\alpha A_1+ \\beta A_2)= \\alpha A_1v+ \\beta A_2v\\\\\nf(\\alpha A_1+ \\beta A_2)=\\alpha f(A_1)+\\beta f(A_2)\\\\\n\n\\text{Thus, f is a linear mapping}"
Comments
Leave a comment