Assume that f(x) is an odd function on the interval [−L/2, L/2].
am=L1∫−LLf(x)cos(Lmπx)dx=0,m=0,1,2,...
bn=L1∫−LLf(x)sin(Lnπx)dx,n=1,2,...
bn=L1∫−LLf(x)sin(Lnπx)dx=
=π/22∫0π/2cosxsin(π/2nπx)dx=
=π4∫0π/2cosxsin(2nx)dx
∫cosxsin(2nx)dx=
=21∫(sin((2n+1)x)+sin((2n−1)x))dx=
=−2(2n+1)1cos((2n+1)x)−2(2n−1)1cos((2n−1)x)+C
bn=π4∫0π/2cosxsin(2nx)dx=
=−π(2n+1)2(cos((2n+1)2π)+π(2n+1)2cos((2n+1)(0))− −π(2n−1)2(cos((2n−1)2π)+π(2n−1)2cos((2n−1)(0))=
=π(2n+1)2sin(πn)+π(2n+1)2+
+π(2n−1)2sin(πn)+π(2n−1)2=π(4n2−1)8n
f(x)∼n=1∑∞π(4n2−1)8nsin(2nx)
Comments