Question #132028
Expand f(x) = cos x, 0 < x < π/2 , in a Fourier sine series.
1
Expert's answer
2020-09-10T18:02:40-0400

Assume that f(x) is an odd function on the interval [−L/2, L/2].


am=1LLLf(x)cos(mπxL)dx=0,m=0,1,2,...a_m=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\cos(\dfrac{m\pi x}{L})dx=0, m=0,1,2,...

bn=1LLLf(x)sin(nπxL)dx,n=1,2,...b_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\sin(\dfrac{n\pi x}{L})dx, n=1,2,...

bn=1LLLf(x)sin(nπxL)dx=b_n=\dfrac{1}{L}\displaystyle\int_{-L}^{L}f(x)\sin(\dfrac{n\pi x}{L})dx=

=2π/20π/2cosxsin(nπxπ/2)dx==\dfrac{2}{\pi/2}\displaystyle\int_{0}^{\pi/2}\cos x\sin(\dfrac{n\pi x}{\pi/2})dx=

=4π0π/2cosxsin(2nx)dx=\dfrac{4}{\pi}\displaystyle\int_{0}^{\pi/2}\cos x\sin(2nx)dx

cosxsin(2nx)dx=\int\cos x\sin (2nx)dx=

=12(sin((2n+1)x)+sin((2n1)x))dx==\dfrac{1}{2}\int(\sin ((2n+1)x)+\sin ((2n-1)x))dx=

=12(2n+1)cos((2n+1)x)12(2n1)cos((2n1)x)+C=-\dfrac{1}{2(2n+1)}\cos((2n+1)x)-\dfrac{1}{2(2n-1)}\cos((2n-1)x)+C

bn=4π0π/2cosxsin(2nx)dx=b_n=\dfrac{4}{\pi}\displaystyle\int_{0}^{\pi/2}\cos x\sin(2nx)dx=

=2π(2n+1)(cos((2n+1)π2)+2π(2n+1)cos((2n+1)(0))=-\dfrac{2}{\pi(2n+1)}(\cos((2n+1)\dfrac{\pi}{2})+\dfrac{2}{\pi(2n+1)}\cos((2n+1)(0))-

2π(2n1)(cos((2n1)π2)+2π(2n1)cos((2n1)(0))=-\dfrac{2}{\pi(2n-1)}(\cos((2n-1)\dfrac{\pi}{2})+\dfrac{2}{\pi(2n-1)}\cos((2n-1)(0))=



=2π(2n+1)sin(πn)+2π(2n+1)+=\dfrac{2}{\pi(2n+1)}\sin(\pi n)+\dfrac{2}{\pi(2n+1)}+

+2π(2n1)sin(πn)+2π(2n1)=8nπ(4n21)+\dfrac{2}{\pi(2n-1)}\sin(\pi n)+\dfrac{2}{\pi(2n-1)}=\dfrac{8n}{\pi(4n^2-1)}

f(x)n=18nπ(4n21)sin(2nx)f(x)\sim\displaystyle\sum_{n=1}^\infin\dfrac{8n}{\pi(4n^2-1)}\sin(2nx)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS