Solution f(x)=x2,0<x<2π, in a Fourier cosine series;
f(x)=a0+∑n=1∞an cos nx+∑n=1∞bn sin nx∴ a0=2π1∫02πf(x) dx=2π1∫02πx2 dx=2π1∣3x3∣02π=2π1[3(2π)3−30]⟹a0=2π1[38π3]=34π3−−−−−−−−−−i∴an=π1∫02πF(x) cos nx dx=π1∫02πx2 cos nx dx=π1∣x2(nsin nx)−2x(n2−cos nx)+2(n3−sin nx)∣02π=π1[4π2(nsin 2πn)−4π(n2−cos 2πn)+2(n3sin 2πn)]=π1[4π(n2cos 2πn)]=π1(n24π)=n24⟹an=n24−−−−−−−−−−−−−−ii∴bn=π1∫02πf(x) sin nx dx=π1∫02πx2 sin nx dx=π1∣x2(n−cos nx)−2x(n2−sin nx)+2(n3cos nx)∣02π=π1[4π2(n−cos2πn)−4π(n2−sin2πn)+2(n3cos2πn)]02π=π1(−n4π2) (∵ cos2πn=cos 0=1)=bn=−n4π−−−−−−−−−−−−−−−iii∴F(x)=a0+∑n=1∞an cos nx+∑n=1∞bn sin nx∴ x2=34π2+n24∑n=1∞ cos nx−4π∑n=1∞n1 sin nx=34π2+4(121cos x+221cos 2x+321cos 3x+−−−−)−4π(11sin x+21sin 2x+31sin 3x+−−−−)
∴ Put value of x=π
∴ π2=34π2+4(121cos π+221cos 2π+321cos 3π+−−−−)−4π(11sin nπ+21sin 2π+31sin 3π+−−−−)∴ π2=34π2+4(−121+221−321+−−−−−)∴ π2−34π2=4(−121+221−321+−−−−−)∴ 3π2=4(−121+221−321+−−−−−)∴ −12π2=(−121+221−321+−−−−−)⟹ [12π2=(121−221+321−−)]−−−−>Answer
Comments
Leave a comment