1). Given,
n=1∑∞(4n−1)(4n+3)1 Thus,
n=1∑∞(4n−1)(4n+3)1=41n=1∑∞(4n−11−4n+31) Now, by Telescoping method, we get
n=1∑∞(4n−1)(4n+3)1=41n→∞lim(31−4n+31)=121<1 2).
Given,
n=1∑∞4n2−11=n=1∑∞(2n−1)(2n+1)1=21n=1∑∞(2n−11−2n+11) Again, by Telescoping sum we get
n=1∑∞4n2−11=21n→∞lim(1−2n+11)=1/2<1 Hence, we are done.
Comments