Question #123127
Prove that the series below converges and has a sum<1
1) The summation of 1/(4n-1)(4n+3)as n tends to infinity
2) The summation of1/4n^2-1
1
Expert's answer
2020-06-22T18:05:21-0400

1). Given,

n=11(4n1)(4n+3)\sum_{n=1}^{\infty}\dfrac{1}{(4n-1)(4n+3)}

Thus,

n=11(4n1)(4n+3)=14n=1(14n114n+3)\sum_{n=1}^{\infty}\dfrac{1}{(4n-1)(4n+3)}=\frac{1}{4}\sum_{n=1}^{\infty}\bigg(\dfrac{1}{4n-1}-\frac{1}{4n+3}\bigg)

Now, by Telescoping method, we get

n=11(4n1)(4n+3)=14limn(1314n+3)=112<1\sum_{n=1}^{\infty}\dfrac{1}{(4n-1)(4n+3)}=\frac{1}{4}\lim_{n\rightarrow \infty}(\frac{1}{3}-\frac{1}{4n+3})=\frac{1}{12}<1

2).

Given,

n=114n21=n=11(2n1)(2n+1)=12n=1(12n112n+1)\sum_{n=1}^{\infty}\dfrac{1}{4n^2-1}=\sum_{n=1}^{\infty}\dfrac{1}{(2n-1)(2n+1)}=\frac{1}{2}\sum_{n=1}^{\infty}\bigg(\dfrac{1}{2n-1}-\frac{1}{2n+1}\bigg)

Again, by Telescoping sum we get

n=114n21=12limn(112n+1)=1/2<1\sum_{n=1}^{\infty}\dfrac{1}{4n^2-1}=\frac{1}{2}\lim_{n\rightarrow \infty}(1-\frac{1}{2n+1})=1/2<1

Hence, we are done.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS