for (x,y)≠\neq=(0,0),
f(x,y) = x2y3x4+y2\frac{x^2 y^3}{x^4+y^2}x4+y2x2y3
the directional derivative of f at A=(a,b) in the direction of U=(u1,u2) is
D = limt→of(A+tU)−f(A)t=limt→of(tu1,tu2)−f(0,0)t\lim_{t \to o} \frac{f(A+tU)-f(A)}{t} = \lim_{t \to o} \frac{f(tu_1 , tu_2)-f(0,0)}{t}limt→otf(A+tU)−f(A)=limt→otf(tu1,tu2)−f(0,0)
limt→ot5u12u23t3(t2u14+u22)\lim_{t \to o} \frac{t^5 u_1^2 u_2^3}{t^3 (t^2 u_1 ^4+ u_2 ^2)}limt→ot3(t2u14+u22)t5u12u23
limt→ot2u12u23t2u14+u22\lim_{t \to o} \frac{t^2 u_1 ^2 u_2 ^3}{t^2 u_1 ^4+ u_2 ^2}limt→ot2u14+u22t2u12u23 = 0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments