Direction derivative of f(X,y) at (0,0) in the direction of u⃗=(u1,u2)\vec{u} = (u_1,u_2)u=(u1,u2) is
f′((0,0),(u1,u2))=limt→0f((0,0)+t(u1,u2))−f(0,0)t=limt→0f(tu1,tu2)tf'((0,0),(u_1,u_2)) = \lim_{t\to 0} \frac{f((0,0)+t(u_1,u_2))-f(0,0)}{t} = \lim_{t\to 0} \frac{f(tu_1,tu_2)}{t}f′((0,0),(u1,u2))=limt→0tf((0,0)+t(u1,u2))−f(0,0)=limt→0tf(tu1,tu2)
=limt→01tt5u12u23t4u12+t2u22=limt→0t2u12u23t2u12+u22=0=\lim_{t\to 0} \frac{1}{t} \frac{t^5 u_1^2 u_2^3}{t^4u_1^2+t^2u_2^2}=\lim_{t\to 0} \frac{t^2 u_1^2 u_2^3}{t^2u_1^2+u_2^2}=0=limt→0t1t4u12+t2u22t5u12u23=limt→0t2u12+u22t2u12u23=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments