2020-05-08T02:28:05-04:00
Use Euler summation formula,or integration by parts in a Reimann stieltjies to show that
Summation k from one to infinity 1/k= log n- integral one to n x-[x]/x^2 dx+1
1
2020-05-13T19:42:16-0400
∑ k = 1 n 1 k = ∫ 1 n 1 x d [ x ] + 1 = \displaystyle\sum_{k=1}^n{1\over k}=\displaystyle\int_{1}^n{1\over x}d[x]+1= k = 1 ∑ n k 1 = ∫ 1 n x 1 d [ x ] + 1 =
= − ∫ 1 n [ x ] d x − 1 + n − 1 [ n ] − 1 − 1 [ 1 ] + 1 = =-\displaystyle\int_{1}^n[x]dx^{-1}+n^{-1}[n]-1^{-1}[1]+1= = − ∫ 1 n [ x ] d x − 1 + n − 1 [ n ] − 1 − 1 [ 1 ] + 1 =
= ∫ 1 n x − 1 d x − ∫ 1 n x − 1 d x + ∫ 1 n [ x ] x 2 d x + 1 = =\displaystyle\int_{1}^nx^{-1}dx-\displaystyle\int_{1}^nx^{-1}dx+\displaystyle\int_{1}^n{[x]\over x^2}dx+1= = ∫ 1 n x − 1 d x − ∫ 1 n x − 1 d x + ∫ 1 n x 2 [ x ] d x + 1 =
= log n − ∫ 1 n x − [ x ] x 2 d x + 1 =\log{n}-\displaystyle\int_{1}^n{x-[x]\over x^2}dx+1 = log n − ∫ 1 n x 2 x − [ x ] d x + 1
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Dear Sheela John, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you for your help assignment expert