Question #111854
Prove that lim(Xn) =0 iff lim(|Xn|)=0 . Give an example to show that convergence of (|Xn|) need not imply the convergence of (Xn)
1
Expert's answer
2020-04-24T18:37:10-0400

limnxn=0ε>0 N n>N xn0<ε\lim\limits_{n\to\infty}x_n=0\Leftrightarrow\forall\varepsilon>0\ \exists N\ \forall n>N\ |x_n-0|<\varepsilon

limnxn=0ε>0 N n>N xn0<ε\lim\limits_{n\to\infty}|x_n|=0\Leftrightarrow\forall\varepsilon>0\ \exists N\ \forall n>N\ ||x_n|-0|<\varepsilon

Since xn0=xn0|x_n-0|=||x_n|-0|, we obtain that limnxn=0limnxn=0\lim\limits_{n\to\infty}x_n=0\Leftrightarrow\lim\limits_{n\to\infty}|x_n|=0

Example of a divergent sequence xnx_n such that xn|x_n| is a convergent sequence: xn=(1)nx_n=(-1)^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS