Solution:
f(x)=a0+a1×x+a2×x2+a3×x3
3a0+a1×∑xi+a2×∑xi2+a+3×∑xi3=∑yi
a0×∑xi+a1×∑xi2+a2×∑xi3+a3×∑xi4=∑xi×yi
a0×∑xi2+a1×∑xi3+a2×∑xi4+a3×∑xi5=∑xi2×yi
x1=1990;x2=1991;x3=1992;x4=1993;x5=1994
y1=2.1;y2=3.4;y3=4.5;y4=5.3;y5=6.2
∑xi=9960;∑xi2=19840330;∑xi3=3.95×1010;∑xi4=7.87×1013;∑xi5=1.57×1017;∑xi6=3.12×1020
∑yi=21.5;∑xi×yi=42838.1;∑xi2×yi=8.54×107;∑xi3×yi=1.06×1031
f(x)=−181779.1+0.00019×x3+2579.15×x−1.215676×x2
f(2000)=5.8
For case number 2:
x1=1990;x2=1991;x3=1992;x4=1993;x5=1994
y1=6.6;y2=6.8;y3=7.0;y4=7.4;y5=7.8
∑xi=9960;∑xi2=19840330;∑xi3=3.95×1010;∑xi4=7.87×1013;∑xi5=1.57×1017;∑xi6=3.12×1020
∑yi=35.6;∑xi×yi=70918.2;∑xi2×yi=1.41×108;∑xi3×yi=1.76×1031
f(x)=−475741.2+801.2×x−0.4449×x2+0.000082×x3 f(2000)=8.2
Comments