Solution:
"a_0\\times\\sum x_i+a_1\\times\\sum x_i^2+a_2\\times\\sum x_i^3+a_3\\times\\sum x_i^4=\\sum x_i\\times y_i"
"\\sum x_i=9960; \\sum x_i^2=19840330; \\sum x_i^3=3.95\\times 10^{10}; \\sum x_i^4=7.87\\times 10^{13};\n\\sum x_i^5=1.57\\times 10^{17}; \\sum x_i^6=3.12\\times 10^{20}"
"f(x)=-181779.1+0.00019\\times x^3+2579.15\\times x-1.215676\\times x^2"
For case number 2:
"\\sum x_i=9960; \\sum x_i^2=19840330; \\sum x_i^3=3.95\\times 10^{10}; \\sum x_i^4=7.87\\times 10^{13};\n\\sum x_i^5=1.57\\times 10^{17}; \\sum x_i^6=3.12\\times 10^{20}"
"\\sum y_i=35.6; \\sum x_i\\times y_i=70918.2; \\sum x_i^2\\times y_i=1.41\\times 10^8; \\sum x_i^3\\times y_i=1.76\\times 10^{31}"
"f(2000)=8.2"
Comments
Leave a comment