"C=p_1V_1^n"
"C=1.6\\times 10^5 N\/m^2(0.8m^3)^{1.4}\\approx1.17070\\times 10^5 N\\cdot m^{2.2}"
"Work\\ done=W=\\displaystyle\\int_{V_1}^{V_2} pdV, where\\ p={C \\over V^n}"
"W=\\displaystyle\\int_{0.8m^3}^{0.6m^3} {1.17070\\times 10^5 N\\cdot m^{2.2} \\over V^{1.4}}dV="
"=1.17070\\times 10^5 N\\cdot m^{2.2}(-{1 \\over 0.4})[{1 \\over V^{0.4}}]\\begin{matrix}=-\n 0.6m^3 \\\\\n 0.8m^3\n\\end{matrix}\\approx"
"\\approx1.17070\\times 10^5 N\\cdot m^{2.2}(-0.333353m^{1.2})\\approx-39025.649 J"
Simpson’s rule
"W=\\displaystyle\\int_{0.8m^3}^{0.6m^3} {1.17070\\times 10^5 N\\cdot m^{2.2} \\over V^{1.4}}dV="
"=1.17070\\times 10^5 N\\cdot m^{2.2}\\displaystyle\\int_{0.8m^3}^{0.6m^3} {1 \\over V^{1.4}}dV"
Evaluate "\\displaystyle\\int_{0.8m^3}^{0.6m^3} {1 \\over V^{1.4}}dV" using Simpson’s rule.
"f(V_0)=f(0.6)={1 \\over 0.6^{1.4}}\\approx2.044505"
"4f(V_1)=4f(0.65)={4 \\over 0.65^{1.4}}\\approx7.311076"
"2f(V_2)=2f(0.65)={2 \\over 0.7^{1.4}}\\approx3.295283"
"4f(V_3)=4f(0.75)={4 \\over 0.75^{1.4}}\\approx5.983761"
"f(V_5)=f(0.8)={1 \\over 0.8^{1.4}}\\approx1.366703"
"\\displaystyle\\int_{a}^{b} f(V)dV\\approx"
"\\approx0.333355"
"W\\approx1.17070\\times 10^5 N\\cdot m^{2.2}(-0.333355m^{1.2})\\approx-39025.923 J"
Comments
Leave a comment