are L 1 , 0 ( x ) = x − x 1 x 0 − x 1 = x − 1.25 1 − 1.25 = 5 − 4 x L_{1,0}(x) = \frac{x-x_1}{x_0-x_1} = \frac{x-1.25}{1-1.25}=5-4x L 1 , 0 ( x ) = x 0 − x 1 x − x 1 = 1 − 1.25 x − 1.25 = 5 − 4 x and L 1 , 1 ( x ) = x − x 0 x 1 − x 0 = x − 1 1.25 − 1 = 4 x − 4 L_{1,1}(x) = \frac{x-x_0}{x_1-x_0} = \frac{x-1}{1.25-1}=4x-4 L 1 , 1 ( x ) = x 1 − x 0 x − x 0 = 1.25 − 1 x − 1 = 4 x − 4 for the first degree. Substituting x = 1.4 get
L 1 , 0 ( 1.4 ) = − 0.6 L_{1,0}(1.4) = -0.6 L 1 , 0 ( 1.4 ) = − 0.6 and L 1 , 1 ( 1.4 ) = 1.6 L_{1,1}(1.4) = 1.6 L 1 , 1 ( 1.4 ) = 1.6
For second degree
L 2 , 0 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) = ( x − 1.25 ) ( x − 1.6 ) ( 1 − 1.25 ) ( 1 − 1.6 ) = 20 3 ( 1.25 − x ) ( 1.6 − x ) L_{2,0}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-1.25)(x-1.6)}{(1-1.25)(1-1.6)}=\frac{20}{3}(1.25-x)(1.6-x) L 2 , 0 ( x ) = ( x 0 − x 1 ) ( x 0 − x 2 ) ( x − x 1 ) ( x − x 2 ) = ( 1 − 1.25 ) ( 1 − 1.6 ) ( x − 1.25 ) ( x − 1.6 ) = 3 20 ( 1.25 − x ) ( 1.6 − x ) and L 2 , 0 ( x ) = − 0.2 L_{2,0}(x) =-0.2 L 2 , 0 ( x ) = − 0.2
L 2 , 1 ( x ) = ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) = ( x − 1 ) ( x − 1.6 ) ( 1.25 − 1 ) ( 1.25 − 1.6 ) = 80 7 ( x − 1 ) ( 1.6 − x ) L_{2,1}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = \frac{(x-1)(x-1.6)}{(1.25-1)(1.25-1.6)}=\frac{80}{7}(x-1)(1.6-x) L 2 , 1 ( x ) = ( x 1 − x 0 ) ( x 1 − x 2 ) ( x − x 0 ) ( x − x 2 ) = ( 1.25 − 1 ) ( 1.25 − 1.6 ) ( x − 1 ) ( x − 1.6 ) = 7 80 ( x − 1 ) ( 1.6 − x ) and L 2 , 1 ( 1.4 ) ≈ 0.914286 L_{2,1}(1.4) \approx 0.914286 L 2 , 1 ( 1.4 ) ≈ 0.914286
L 2 , 2 ( x ) = ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) = ( x − 1 ) ( x − 1.25 ) ( 1.6 − 1 ) ( 1.6 − 1.25 ) = 100 21 ( x − 1 ) ( x − 1.25 ) L_{2,2}(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{(x-1)(x-1.25)}{(1.6-1)(1.6-1.25)}=\frac{100}{21}(x-1)(x-1.25) L 2 , 2 ( x ) = ( x 2 − x 0 ) ( x 2 − x 1 ) ( x − x 0 ) ( x − x 1 ) = ( 1.6 − 1 ) ( 1.6 − 1.25 ) ( x − 1 ) ( x − 1.25 ) = 21 100 ( x − 1 ) ( x − 1.25 ) and L 2 , 2 ( 1.4 ) ≈ 0.285714 L_{2,2}(1.4) \approx 0.285714 L 2 , 2 ( 1.4 ) ≈ 0.285714
a) f ( x ) = s i n ( π x ) f(x)=sin(\pi x) f ( x ) = s in ( π x ) :
f ( x 0 ) = s i n ( π ) = 0 f(x_0)=sin(\pi) = 0 f ( x 0 ) = s in ( π ) = 0 ;
f ( x 1 ) = s i n ( 1.25 π ) = − 1 2 ≈ − 0.707107 f(x_1)=sin(1.25 \pi) = \frac{-1}{\sqrt{2}}\approx -0.707107 f ( x 1 ) = s in ( 1.25 π ) = 2 − 1 ≈ − 0.707107 ;
f ( x 2 ) = s i n ( 1.6 π ) ≈ − 0.951057 f(x_2) = sin(1.6 \pi) \approx -0.951057 f ( x 2 ) = s in ( 1.6 π ) ≈ − 0.951057
f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) = 0 ( − 0.6 ) − 0.707107 ⋅ 1.6 = − 1.13137 f(1.4) = f(x_0) L_{1,0}(x) + f(x_1)L_{1,1}(x) = 0(-0.6) -0.707107 \cdot 1.6 = -1.13137 f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) = 0 ( − 0.6 ) − 0.707107 ⋅ 1.6 = − 1.13137
Precise value is -0.951057, and error is (-0.951057) - (-1.13137) =0.180315
For second degree
f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) = 0 ( − 0.2 ) − 0.707107 ⋅ 0.914286 − 0.951057 ⋅ 0.285714 = − 0.918228 f(1.4) = f(x_0) L_{2,0}(x) + f(x_1)L_{2,1}(x) + + f(x_1)L_{2,1}(x) = 0(-0.2) -0.707107 \cdot 0.914286 -0.951057 \cdot 0.285714 = -0.918228 f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) = 0 ( − 0.2 ) − 0.707107 ⋅ 0.914286 − 0.951057 ⋅ 0.285714 = − 0.918228
Error is -0.951057-(-0.918228) = -0.0328285
b) f ( x ) = x − 1 3 f(x) = \sqrt[3]{x-1} f ( x ) = 3 x − 1
f ( 1 ) = 0 f(1)=0 f ( 1 ) = 0
f ( 1.25 ) ≈ 0.629961 f(1.25) \approx 0.629961 f ( 1.25 ) ≈ 0.629961
f ( 1.6 ) ≈ 0.843433 f(1.6) \approx 0.843433 f ( 1.6 ) ≈ 0.843433
f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) ≈ f(1.4) = f(x_0) L_{1,0}(x) + f(x_1)L_{1,1}(x) \approx f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) ≈ 1.00794
Precise value is 0.736806, and error is -0.271131
Second degree:
f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) ≈ 0.816945 f(1.4) = f(x_0) L_{2,0}(x) + f(x_1)L_{2,1}(x) + + f(x_1)L_{2,1}(x) \approx 0.816945 f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) ≈ 0.816945
error -0.0801384
c)
f ( x ) = l o g 10 ( 3 x − 1 ) f(x) = log_{10}(3x-1) f ( x ) = l o g 10 ( 3 x − 1 )
f ( x 0 ) ≈ 0.30103 f(x_0) \approx 0.30103 f ( x 0 ) ≈ 0.30103
f ( x 1 ) ≈ 0.439333 f(x_1) \approx 0.439333 f ( x 1 ) ≈ 0.439333
f ( x 2 ) ≈ 0.579784 f(x_2) \approx 0.579784 f ( x 2 ) ≈ 0.579784
f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) ≈ 0.522314 f(1.4) = f(x_0) L_{1,0}(x) + f(x_1)L_{1,1}(x) \approx 0.522314 f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) ≈ 0.522314
Precise value is 0.50515, and error is -0.0171643
Second degree:
f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) ≈ 0.507122 f(1.4) = f(x_0) L_{2,0}(x) + f(x_1)L_{2,1}(x) + + f(x_1)L_{2,1}(x) \approx 0.507122 f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) ≈ 0.507122
error is -0.00197208
d)
f ( x ) = e 2 x − x f(x)= e^{2x}-x f ( x ) = e 2 x − x
f ( x 0 ) ≈ 6.38906 f(x_0)\approx 6.38906 f ( x 0 ) ≈ 6.38906
f ( x 1 ) ≈ 10.9325 f(x_1)\approx 10.9325 f ( x 1 ) ≈ 10.9325
f ( x 2 ) ≈ 22.9325 f(x_2) \approx 22.9325 f ( x 2 ) ≈ 22.9325
f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) ≈ 13.6586 f(1.4) = f(x_0) L_{1,0}(x) + f(x_1)L_{1,1}(x) \approx 13.6586 f ( 1.4 ) = f ( x 0 ) L 1 , 0 ( x ) + f ( x 1 ) L 1 , 1 ( x ) ≈ 13.6586
Precise value is 15.0446, and error is 1.38609
Second degree:
f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) ≈ 15.2698 f(1.4) = f(x_0) L_{2,0}(x) + f(x_1)L_{2,1}(x) + + f(x_1)L_{2,1}(x) \approx 15.2698 f ( 1.4 ) = f ( x 0 ) L 2 , 0 ( x ) + f ( x 1 ) L 2 , 1 ( x ) + + f ( x 1 ) L 2 , 1 ( x ) ≈ 15.2698
error is -0.225117
Comments