f(x)=xsinx
for n = 1:
I=π(2f(0)+f(π))=0
for n = 2:
I=2π(2f(0)+f(π/2)+2f(π/2)+f(π))=4π2=2.465
for n = 4:
I=4π(2f(0)+f(π/4)+2f(π/4)+f(π/2)+2f(π/2)+f(3π/4)+2f(3π/4)+f(π))=
=4π(πsin(π/4)/4+π/2+3πsin(3π/4)/4)=2.975
for n = 8:
I=8π(f(π/8)+f(π/4)+f(3π/8)+f(π/2)+f(5π/8)+f(3π/4)+f(7π/8))=
=1.232(0.048+0.177+0.346+0.5+0.578+0.530+0.336)=3.098
Romberg extrapolation:
Rj,k=Rj,k−1+4k−1−1Rj,k−1−Rj−1,k−1
for n = 1:
R1,1=π(2f(0)+f(π))=0
for n = 2:
R2,1=2π(2f(0)+f(π/2)+2f(π/2)+f(π))=2.465
R2,2=R2,1+3R2,1−R1,1=3.287
for n = 4:
R3,1=4π(2f(0)+f(π/4)+2f(π/4)+f(π/2)+2f(π/2)+f(3π/4)+2f(3π/4)+f(π))=2.975
R3,2=R3,1+3R3,1−R2,1=3.145
R3,3=R3,2+15R3,2−R2,2=3.136
for n = 8:
R4,1=8π(f(π/8)+f(π/4)+f(3π/8)+f(π/2)+f(5π/8)+f(3π/4)+
+f(7π/8))=3.098
R4,2=R4,1+3R4,1−R3,1=3.139
R4,3=R4,2+15R4,2−R3,2=3.139
I=R4,4=R4,3+63R4,3−R3,3=3.139
Comments