Question #283853

Use the composite trapezoidal rule to find approximations to 𝐼 = ∫ 𝐬𝐢𝐧𝒙 𝒅𝒙 𝝅


𝟎


with n = 1, 2, 4, and 8. Then perform Romberg extrapolation on the results.

1
Expert's answer
2022-01-03T14:52:12-0500

f(x)=xsinxf(x)=xsinx


for n = 1:


I=π(f(0)+f(π)2)=0I=\pi(\frac{f(0)+f(\pi)}{2})=0


for n = 2:


I=π2(f(0)+f(π/2)2+f(π/2)+f(π)2)=π24=2.465I=\frac{\pi}{2}(\frac{f(0)+f(\pi/2)}{2}+\frac{f(\pi/2)+f(\pi)}{2})=\frac{\pi^2}{4}=2.465


for n = 4:


I=π4(f(0)+f(π/4)2+f(π/4)+f(π/2)2+f(π/2)+f(3π/4)2+f(3π/4)+f(π)2)=I=\frac{\pi}{4}(\frac{f(0)+f(\pi/4)}{2}+\frac{f(\pi/4)+f(\pi/2)}{2}+\frac{f(\pi/2)+f(3\pi/4)}{2}+\frac{f(3\pi/4)+f(\pi)}{2})=


=π4(πsin(π/4)/4+π/2+3πsin(3π/4)/4)=2.975=\frac{\pi}{4}(\pi sin(\pi/4)/4+\pi /2+3\pi sin(3\pi/4)/4)=2.975


for n = 8:


I=π8(f(π/8)+f(π/4)+f(3π/8)+f(π/2)+f(5π/8)+f(3π/4)+f(7π/8))=I=\frac{\pi}{8}(f(\pi/8)+f(\pi/4)+f(3\pi/8)+f(\pi/2)+f(5\pi/8)+f(3\pi/4)+f(7\pi/8))=


=1.232(0.048+0.177+0.346+0.5+0.578+0.530+0.336)=3.098=1.232(0.048+0.177+0.346+0.5+0.578+0.530+0.336)=3.098


Romberg extrapolation:

Rj,k=Rj,k1+Rj,k1Rj1,k14k11R_{j,k}=R_{j,k-1}+\frac{R_{j,k-1}-R_{j-1,k-1}}{4^{k-1}-1}


for n = 1:

R1,1=π(f(0)+f(π)2)=0R_{1,1}=\pi(\frac{f(0)+f(\pi)}{2})=0


for n = 2:

R2,1=π2(f(0)+f(π/2)2+f(π/2)+f(π)2)=2.465R_{2,1}=\frac{\pi}{2}(\frac{f(0)+f(\pi/2)}{2}+\frac{f(\pi/2)+f(\pi)}{2})=2.465


R2,2=R2,1+R2,1R1,13=3.287R_{2,2}=R_{2,1}+\frac{R_{2,1}-R_{1,1}}{3}=3.287


for n = 4:

R3,1=π4(f(0)+f(π/4)2+f(π/4)+f(π/2)2+f(π/2)+f(3π/4)2+f(3π/4)+f(π)2)=2.975R_{3,1}=\frac{\pi}{4}(\frac{f(0)+f(\pi/4)}{2}+\frac{f(\pi/4)+f(\pi/2)}{2}+\frac{f(\pi/2)+f(3\pi/4)}{2}+\frac{f(3\pi/4)+f(\pi)}{2})=2.975


R3,2=R3,1+R3,1R2,13=3.145R_{3,2}=R_{3,1}+\frac{R_{3,1}-R_{2,1}}{3}=3.145


R3,3=R3,2+R3,2R2,215=3.136R_{3,3}=R_{3,2}+\frac{R_{3,2}-R_{2,2}}{15}=3.136


for n = 8:


R4,1=π8(f(π/8)+f(π/4)+f(3π/8)+f(π/2)+f(5π/8)+f(3π/4)+R_{4,1}=\frac{\pi}{8}(f(\pi/8)+f(\pi/4)+f(3\pi/8)+f(\pi/2)+f(5\pi/8)+f(3\pi/4)+

+f(7π/8))=3.098+f(7\pi/8))=3.098


R4,2=R4,1+R4,1R3,13=3.139R_{4,2}=R_{4,1}+\frac{R_{4,1}-R_{3,1}}{3}=3.139


R4,3=R4,2+R4,2R3,215=3.139R_{4,3}=R_{4,2}+\frac{R_{4,2}-R_{3,2}}{15}=3.139


I=R4,4=R4,3+R4,3R3,363=3.139I=R_{4,4}=R_{4,3}+\frac{R_{4,3}-R_{3,3}}{63}=3.139


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS