Lagrange polynomial:
P(x)=f0​L0​(x)+f1​L1​(x)+f2​L2​(x)+f3​L3​(x)
L0​(x)=(x0​−x1​)(x0​−x2​)(x0​−x3​)(x−x1​)(x−x2​)(x−x3​)​=(−2+1)(−2)(−2−4)(x+1)x(x−4)​=−12(x+1)x(x−4)​
L1​(x)=(x1​−x0​)(x1​−x2​)(x1​−x3​)(x−x0​)(x−x2​)(x−x3​)​=(−1+2)(−1)(−1−4)(x+2)x(x−4)​=5(x+2)x(x−4)​
L2​(x)=(x2​−x0​)(x2​−x1​)(x2​−x3​)(x−x0​)(x−x1​)(x−x3​)​=(0+2)(0+1)(0−4)(x+2)(x+1)(x−4)​=−8(x+2)(x+1)(x−4)​
L3​(x)=(x3​−x0​)(x3​−x1​)(x3​−x2​)(x−x0​)(x−x1​)(x−x2​)​=4(4+2)(4+1)(x+2)(x+1)x​=120(x+2)(x+1)x​
f(2)=P(2)=2122(2+1)(2−4)​+452(2+2)(2−4)​−8(2+2)(2+1)(2−4)​+81202(2+2)(2+1)​=
=−2−12.8+3+1.6=−10.2
Comments