Lagrange polynomial:
P(x)=f0L0(x)+f1L1(x)+f2L2(x)+f3L3(x)
L0(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)=(−2+1)(−2)(−2−4)(x+1)x(x−4)=−12(x+1)x(x−4)
L1(x)=(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)=(−1+2)(−1)(−1−4)(x+2)x(x−4)=5(x+2)x(x−4)
L2(x)=(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)=(0+2)(0+1)(0−4)(x+2)(x+1)(x−4)=−8(x+2)(x+1)(x−4)
L3(x)=(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)=4(4+2)(4+1)(x+2)(x+1)x=120(x+2)(x+1)x
f(2)=P(2)=2122(2+1)(2−4)+452(2+2)(2−4)−8(2+2)(2+1)(2−4)+81202(2+2)(2+1)=
=−2−12.8+3+1.6=−10.2
Comments