Question #269905

Use Lagrange polynomial estimate (2) for the given data.

x -2 -1 0 4

f(x) -2 4 1 8


1
Expert's answer
2021-11-23T14:00:45-0500

Lagrange polynomial:

P(x)=f0L0(x)+f1L1(x)+f2L2(x)+f3L3(x)P(x)=f_0L_0(x)+f_1L_1(x)+f_2L_2(x)+f_3L_3(x)


L0(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)=(x+1)x(x4)(2+1)(2)(24)=(x+1)x(x4)12L_0(x)=\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}=\frac{(x+1)x(x-4)}{(-2+1)(-2)(-2-4)}=-\frac{(x+1)x(x-4)}{12}


L1(x)=(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)=(x+2)x(x4)(1+2)(1)(14)=(x+2)x(x4)5L_1(x)=\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}=\frac{(x+2)x(x-4)}{(-1+2)(-1)(-1-4)}=\frac{(x+2)x(x-4)}{5}


L2(x)=(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)=(x+2)(x+1)(x4)(0+2)(0+1)(04)=(x+2)(x+1)(x4)8L_2(x)=\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}=\frac{(x+2)(x+1)(x-4)}{(0+2)(0+1)(0-4)}=-\frac{(x+2)(x+1)(x-4)}{8}


L3(x)=(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)=(x+2)(x+1)x4(4+2)(4+1)=(x+2)(x+1)x120L_3(x)=\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}=\frac{(x+2)(x+1)x}{4(4+2)(4+1)}=\frac{(x+2)(x+1)x}{120}


f(2)=P(2)=22(2+1)(24)12+42(2+2)(24)5(2+2)(2+1)(24)8+82(2+2)(2+1)120=f(2)=P(2)=2\frac{2(2+1)(2-4)}{12}+4\frac{2(2+2)(2-4)}{5}-\frac{(2+2)(2+1)(2-4)}{8}+8\frac{2(2+2)(2+1)}{120}=


=212.8+3+1.6=10.2=-2-12.8+3+1.6=-10.2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS