Question #269905

Use Lagrange polynomial estimate (2) for the given data.

x -2 -1 0 4

f(x) -2 4 1 8


1
Expert's answer
2021-11-23T14:00:45-0500

Lagrange polynomial:

P(x)=f0L0(x)+f1L1(x)+f2L2(x)+f3L3(x)P(x)=f_0L_0(x)+f_1L_1(x)+f_2L_2(x)+f_3L_3(x)


L0(x)=(x−x1)(x−x2)(x−x3)(x0−x1)(x0−x2)(x0−x3)=(x+1)x(x−4)(−2+1)(−2)(−2−4)=−(x+1)x(x−4)12L_0(x)=\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}=\frac{(x+1)x(x-4)}{(-2+1)(-2)(-2-4)}=-\frac{(x+1)x(x-4)}{12}


L1(x)=(x−x0)(x−x2)(x−x3)(x1−x0)(x1−x2)(x1−x3)=(x+2)x(x−4)(−1+2)(−1)(−1−4)=(x+2)x(x−4)5L_1(x)=\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}=\frac{(x+2)x(x-4)}{(-1+2)(-1)(-1-4)}=\frac{(x+2)x(x-4)}{5}


L2(x)=(x−x0)(x−x1)(x−x3)(x2−x0)(x2−x1)(x2−x3)=(x+2)(x+1)(x−4)(0+2)(0+1)(0−4)=−(x+2)(x+1)(x−4)8L_2(x)=\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}=\frac{(x+2)(x+1)(x-4)}{(0+2)(0+1)(0-4)}=-\frac{(x+2)(x+1)(x-4)}{8}


L3(x)=(x−x0)(x−x1)(x−x2)(x3−x0)(x3−x1)(x3−x2)=(x+2)(x+1)x4(4+2)(4+1)=(x+2)(x+1)x120L_3(x)=\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}=\frac{(x+2)(x+1)x}{4(4+2)(4+1)}=\frac{(x+2)(x+1)x}{120}


f(2)=P(2)=22(2+1)(2−4)12+42(2+2)(2−4)5−(2+2)(2+1)(2−4)8+82(2+2)(2+1)120=f(2)=P(2)=2\frac{2(2+1)(2-4)}{12}+4\frac{2(2+2)(2-4)}{5}-\frac{(2+2)(2+1)(2-4)}{8}+8\frac{2(2+2)(2+1)}{120}=


=−2−12.8+3+1.6=−10.2=-2-12.8+3+1.6=-10.2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS