The first divided difference: f[xi,xi+1]=xi+1−xif[xi+1]−f[xi] , where f[xi]=f(xi) .
The second divided difference: f[x0,x1,x2]=x2−x0f[x1,x2]−f[x0,x1]=x2−x0x2−x1f[x2]−f[x1]−x1−x0f[x1]−f[x0]==(x1−x0)(x2−x0)f[x0]+(x1−x0)(x2−x1)(x2−x0)f[x1](x0−x2)+(x2−x1)(x2−x0)f[x2]==(x0−x1)(x0−x2)f(x0)+(x1−x0)(x1−x2)f(x1)+(x2−x0)(x2−x1)f(x2)
Answer: a=(x0−x1)(x0−x2)1,b=(x1−x0)(x1−x2)1,c=(x2−x0)(x2−x1)1.
Comments