Question #209022

The second divided difference f[xo, x1, x2]

can be written as 

f[xo, x1, x2] = af(x0) + bf(x1) + cf(x2). 

Find the expressions for a, b, c. 


1
Expert's answer
2021-06-24T07:46:56-0400

The first divided difference: f[xi,xi+1]=f[xi+1]f[xi]xi+1xif[x_i,x_{i+1}]=\frac{f[x_{i+1}]-f[x_i]}{x_{i+1}-x_i} , where f[xi]=f(xi)f[x_i]=f(x_i) .

The second divided difference: f[x0,x1,x2]=f[x1,x2]f[x0,x1]x2x0=f[x2]f[x1]x2x1f[x1]f[x0]x1x0x2x0==f[x0](x1x0)(x2x0)+f[x1](x0x2)(x1x0)(x2x1)(x2x0)+f[x2](x2x1)(x2x0)==f(x0)(x0x1)(x0x2)+f(x1)(x1x0)(x1x2)+f(x2)(x2x0)(x2x1)f[x_0,x_1,x_2]=\frac{f[x_1,x_2]-f[x_0,x_1]}{x_2-x_0}=\frac{\frac{f[x_{2}]-f[x_1]}{x_{2}-x_1} -\frac{f[x_{1}]-f[x_0]}{x_{1}-x_0} }{x_2-x_0}=\\ =\frac{f[x_0]}{(x_1-x_0)(x_2-x_0) }+\frac{f[x_1](x_0-x_2)}{ (x_1-x_0)(x_2-x_1)(x_2-x_0) }+ \frac{f[x_2]}{(x_2-x_1)(x_2-x_0) }=\\ = \frac{f(x_0)}{(x_0-x_1)(x_0-x_2) }+ \frac{f(x_1)}{(x_1-x_0)(x_1-x_2) }+ \frac{f(x_2)}{(x_2-x_0)(x_2-x_1) }


Answer: a=1(x0x1)(x0x2),b=1(x1x0)(x1x2),c=1(x2x0)(x2x1).a=\frac{1}{(x_0-x_1)(x_0-x_2)},\quad b=\frac{1}{(x_1-x_0)(x_1-x_2)},\quad c=\frac{1}{(x_2-x_0)(x_2-x_1)}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS