f(x)=x2–5x+2 Initial values a0=0,b0=1
f(a0)=f(0)=(0)2−5(0)+2=2
f(b0)=f(1)=(1)2−5(1)+2=−2
f(a0)f(b0)=2(−2)=−4<0
xn=2an+bn
f(xn)≤ε=>answer=xn
an+1=xn,bn+1=bn,f(an)f(xn)≥0
an+1=an,bn+1=xn,f(bn)f(xn)≥0
n123x0.50.250.375f(x)−0.250.81250.265625
Initial values a0=4,b0=5
f(a0)=f(4)=(4)2−5(4)+2=−2
f(b0)=f(5)=(5)2−5(5)+2=2
f(a0)f(b0)=−2(2)=−4<0
xn=2an+bn
f(xn)≤ε=>answer=xn
an+1=xn,bn+1=bn,f(an)f(xn)≥0
an+1=an,bn+1=xn,f(bn)f(xn)≥0
n123x4.54.754.625f(x)−0.250.81250.265625
Comments