Question #204965

Perform three iteration of the bisection method compute the positive root of

the equation f(x) = x² – 5x + 2


1
Expert's answer
2021-06-09T17:46:43-0400
f(x)=x25x+2f(x) = x^2 – 5x + 2

Initial values a0=0,b0=1a_0=0, b_0=1


f(a0)=f(0)=(0)25(0)+2=2f(a_0)=f(0)=(0)^2-5(0)+2=2

f(b0)=f(1)=(1)25(1)+2=2f(b_0)=f(1)=(1)^2-5(1)+2=-2

f(a0)f(b0)=2(2)=4<0f(a_0)f(b_0)=2(-2)=-4<0

xn=an+bn2x_n=\dfrac{a_n+b_n}{2}

f(xn)ε=>answer=xnf(x_n)\leq\varepsilon=>answer=x_n

an+1=xn,bn+1=bn,f(an)f(xn)0a_{n+1}=x_n, b_{n+1}=b_n, f(a_n)f(x_n)\geq 0

an+1=an,bn+1=xn,f(bn)f(xn)0a_{n+1}=a_n, b_{n+1}=x_n, f(b_n)f(x_n)\geq 0

nxf(x)10.50.2520.250.812530.3750.265625\def\arraystretch{1.5} \begin{array}{c:c:c} n & x & f(x) \\ \hline 1 & 0.5 & -0.25 \\ 2 & 0.25 & 0.8125 \\ 3 & 0.375 & 0.265625 \\ \hdashline \end{array}


Initial values a0=4,b0=5a_0=4, b_0=5


f(a0)=f(4)=(4)25(4)+2=2f(a_0)=f(4)=(4)^2-5(4)+2=-2

f(b0)=f(5)=(5)25(5)+2=2f(b_0)=f(5)=(5)^2-5(5)+2=2

f(a0)f(b0)=2(2)=4<0f(a_0)f(b_0)=-2(2)=-4<0

xn=an+bn2x_n=\dfrac{a_n+b_n}{2}

f(xn)ε=>answer=xnf(x_n)\leq\varepsilon=>answer=x_n

an+1=xn,bn+1=bn,f(an)f(xn)0a_{n+1}=x_n, b_{n+1}=b_n, f(a_n)f(x_n)\geq 0

an+1=an,bn+1=xn,f(bn)f(xn)0a_{n+1}=a_n, b_{n+1}=x_n, f(b_n)f(x_n)\geq 0

nxf(x)14.50.2524.750.812534.6250.265625\def\arraystretch{1.5} \begin{array}{c:c:c} n & x & f(x) \\ \hline 1 & 4.5 & -0.25 \\ 2 & 4.75 & 0.8125 \\ 3 & 4.625 & 0.265625 \\ \hdashline \end{array}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS