f(x)=x4−5x3+20x2−40x+60
f′(x)=4x3−15x2+40x−40
xn+1=xn−f′(xn)f(xn) Initial solution x0=2+2i
n=0,x0=2+2i,
f(x0)=−4,
x1=1.91666667+1,91666667i
n=1,x1=1.91666667+1.91666667i,
f(x1)=−0.23746142−0.13310185i
x2=1.91486064+1.90780412i
n=2,x2=1.91486064+1.90780412i
f(x2)=0.00016433−0.00142961i
x3=1.91490059+1.90777750i
n=3,x3=1.91490059+1.90777750i
f(x3)=0.00000002+0.00000003i
x4=1.91490059+1.90777750i
ε=∣f(xn)∣⋅100%
ε=∣−4∣⋅100%=400%
ε=∣−0.23746142−0.13310185i∣⋅100%==27.22205511%
ε=∣0.00016433−0.00142961i∣⋅100%==0.1439023662%
ε=∣0.00000002+0.00000003i∣⋅100%==0.000003%
The root is 1.91490059+1.90777750i
Comments