Question #140244
Using the starting value 2(1 + i ), solve
x4 − 5x3 + 20x2 − 40x + 60 = 0 by Newton-Raphson method, given that all the roots of the given equation are complex.
1
Expert's answer
2020-10-26T20:09:05-0400
f(x)=x45x3+20x240x+60f(x)=x^4-5x^3+20x^2-40x+60

f(x)=4x315x2+40x40f'(x)=4x^3-15x^2+40x-40

xn+1=xnf(xn)f(xn)x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}

Initial solution x0=2+2ix_0 =2+2i

n=0,x0=2+2i,n=0, x_0=2+2i,

f(x0)=4,f(x_0)=-4,

x1=1.91666667+1,91666667ix_1=1.91666667+1,91666667i


n=1,x1=1.91666667+1.91666667i,n=1, x_1=1.91666667+1.91666667i,

f(x1)=0.237461420.13310185if(x_1)=-0.23746142-0.13310185i

x2=1.91486064+1.90780412ix_2=1.91486064+1.90780412i


n=2,x2=1.91486064+1.90780412in=2,x_2=1.91486064+1.90780412i

f(x2)=0.000164330.00142961if(x_2)=0.00016433-0.00142961i

x3=1.91490059+1.90777750ix_3=1.91490059+1.90777750i


n=3,x3=1.91490059+1.90777750in=3,x_3=1.91490059+1.90777750i

f(x3)=0.00000002+0.00000003if(x_3)=0.00000002+0.00000003i

x4=1.91490059+1.90777750ix_4=1.91490059+1.90777750i



ε=f(xn)100%\varepsilon =|f(x_n)|\cdot 100\%

ε=4100%=400%\varepsilon =|-4|\cdot 100\%=400\%

ε=0.237461420.13310185i100%=\varepsilon =|-0.23746142-0.13310185i|\cdot 100\%==27.22205511%=27.22205511\%

ε=0.000164330.00142961i100%=\varepsilon =|0.00016433-0.00142961i|\cdot 100\%==0.1439023662%=0.1439023662\%

ε=0.00000002+0.00000003i100%=\varepsilon =|0.00000002+0.00000003i|\cdot 100\%==0.000003%=0.000003\%



The root is 1.91490059+1.90777750i1.91490059+1.90777750i



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS