Question #127348
Find the approximate area under the curve y= sqrt{x^2+1} on the interval [0,1] using the trapezoid method and 5 subintervals.
1
Expert's answer
2020-07-27T17:49:56-0400

Solution


5 subintervals from 0 to 1, so length of each subinterval is 0.2.


S=s1+s2+s3+s4+s5S = s_1+s_2+s_3+s_4+s_5

s1=0.2(y(0)+y(0.2)2)=0.21+1.0420.202s2=0.2(y(0.2)+y(0.4)2)=0.21.04+1.1620.21s3=0.2(y(0.4)+y(0.6)2)=0.21.16+1.3620.224s4=0.2(y(0.6)+y(0.8)2)=0.21.36+1.6420.245s5=0.2(y(0.8)+y(1)2)=0.21.64+220.27s_1 = 0.2\cdot(\dfrac{y(0)+y(0.2)}{2}) = 0.2\cdot\dfrac{1+\sqrt{1.04}}{2} \approx0.202 \\ s_2 = 0.2\cdot(\dfrac{y(0.2)+y(0.4)}{2}) = 0.2\cdot\dfrac{\sqrt{1.04}+\sqrt{1.16}}{2} \approx0.21 \\ s_3 = 0.2\cdot(\dfrac{y(0.4)+y(0.6)}{2}) = 0.2\cdot\dfrac{\sqrt{1.16}+\sqrt{1.36}}{2} \approx0.224 \\ s_4 = 0.2\cdot(\dfrac{y(0.6)+y(0.8)}{2}) = 0.2\cdot\dfrac{\sqrt{1.36}+\sqrt{1.64}}{2} \approx0.245 \\ s_5 = 0.2\cdot(\dfrac{y(0.8)+y(1)}{2}) = 0.2\cdot\dfrac{\sqrt{1.64}+\sqrt{2}}{2} \approx0.27 \\

S0.202+0.21+0.224+0.245+0.271.15S \approx 0.202+0.21+0.224+0.245+0.27 \approx 1.15


Answer: 1.15


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS