Solution
5 subintervals from 0 to 1, so length of each subinterval is 0.2.
S = s 1 + s 2 + s 3 + s 4 + s 5 S = s_1+s_2+s_3+s_4+s_5 S = s 1 + s 2 + s 3 + s 4 + s 5
s 1 = 0.2 ⋅ ( y ( 0 ) + y ( 0.2 ) 2 ) = 0.2 ⋅ 1 + 1.04 2 ≈ 0.202 s 2 = 0.2 ⋅ ( y ( 0.2 ) + y ( 0.4 ) 2 ) = 0.2 ⋅ 1.04 + 1.16 2 ≈ 0.21 s 3 = 0.2 ⋅ ( y ( 0.4 ) + y ( 0.6 ) 2 ) = 0.2 ⋅ 1.16 + 1.36 2 ≈ 0.224 s 4 = 0.2 ⋅ ( y ( 0.6 ) + y ( 0.8 ) 2 ) = 0.2 ⋅ 1.36 + 1.64 2 ≈ 0.245 s 5 = 0.2 ⋅ ( y ( 0.8 ) + y ( 1 ) 2 ) = 0.2 ⋅ 1.64 + 2 2 ≈ 0.27 s_1 = 0.2\cdot(\dfrac{y(0)+y(0.2)}{2}) = 0.2\cdot\dfrac{1+\sqrt{1.04}}{2} \approx0.202 \\
s_2 = 0.2\cdot(\dfrac{y(0.2)+y(0.4)}{2}) = 0.2\cdot\dfrac{\sqrt{1.04}+\sqrt{1.16}}{2} \approx0.21 \\
s_3 = 0.2\cdot(\dfrac{y(0.4)+y(0.6)}{2}) = 0.2\cdot\dfrac{\sqrt{1.16}+\sqrt{1.36}}{2} \approx0.224 \\
s_4 = 0.2\cdot(\dfrac{y(0.6)+y(0.8)}{2}) = 0.2\cdot\dfrac{\sqrt{1.36}+\sqrt{1.64}}{2} \approx0.245 \\
s_5 = 0.2\cdot(\dfrac{y(0.8)+y(1)}{2}) = 0.2\cdot\dfrac{\sqrt{1.64}+\sqrt{2}}{2} \approx0.27 \\ s 1 = 0.2 ⋅ ( 2 y ( 0 ) + y ( 0.2 ) ) = 0.2 ⋅ 2 1 + 1.04 ≈ 0.202 s 2 = 0.2 ⋅ ( 2 y ( 0.2 ) + y ( 0.4 ) ) = 0.2 ⋅ 2 1.04 + 1.16 ≈ 0.21 s 3 = 0.2 ⋅ ( 2 y ( 0.4 ) + y ( 0.6 ) ) = 0.2 ⋅ 2 1.16 + 1.36 ≈ 0.224 s 4 = 0.2 ⋅ ( 2 y ( 0.6 ) + y ( 0.8 ) ) = 0.2 ⋅ 2 1.36 + 1.64 ≈ 0.245 s 5 = 0.2 ⋅ ( 2 y ( 0.8 ) + y ( 1 ) ) = 0.2 ⋅ 2 1.64 + 2 ≈ 0.27
S ≈ 0.202 + 0.21 + 0.224 + 0.245 + 0.27 ≈ 1.15 S \approx 0.202+0.21+0.224+0.245+0.27 \approx 1.15 S ≈ 0.202 + 0.21 + 0.224 + 0.245 + 0.27 ≈ 1.15
Answer: 1.15
Comments