ax2+bx+c=0ax^2+bx+c=0ax2+bx+c=0 is a basic square equation. In our case a=2;b=−2;c=−9a=2; b=-2;c=-9a=2;b=−2;c=−9 .
Solve the quadratic equation using the discriminant.
The discriminant is D=b2−4ac=(−2)2−4∗2∗(−9)=76D = b^2-4ac=(-2)^2-4*2*(-9)=76D=b2−4ac=(−2)2−4∗2∗(−9)=76 .
x1=−b−D2a=2−764;x2=−b+D2a=2+764x_1=\cfrac{-b-\sqrt D}{2a}=\cfrac{2-\sqrt {76}}{4}; x_2=\cfrac{-b+\sqrt D}{2a}=\cfrac{2+\sqrt {76}}{4}x1=2a−b−D=42−76;x2=2a−b+D=42+76 .
Answer: x1=2−764;x2=2+764x_1=\cfrac{2-\sqrt{76}}{4}; x_2=\cfrac{2+\sqrt{76}}{4}x1=42−76;x2=42+76 .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments