Solution. Find the first derivative using the formula
(uv)′=u′v+v′u. Let u=3x and v=(x-1)^5. Therefore get
f′(x)=(3x(x−1)5)′=3(x−1)5+3x∗5(x−1)4 Simplifying the expression we get
f′(x)=(3x−3)(x−1)4+15x(x−1)4=(18x−3)(x−1)4 Let u=18x-3 and v=(x-1)^4. Therefore get
f′′(x)=18(x−1)4+(18x−3)∗4(x−1)3 Simplifying the expression we get
f′′(x)=(18x−18)(x−1)3+(72x−12)(x−1)3
f′′(x)=(90x−30)(x−1)3 Let u=90x-30 and v=(x-1)^3. Therefore get
f′′′(x)=90(x−1)3+(90x−30)∗3(x−1)2 Simplifying the expression we get
f′′′(x)=(90x−90)(x−1)2+(270x−90)(x−1)2=(360x−180)(x−1)2
Answer.
f′′(x)=(360x−180)(x−1)2
Comments