Solution. let y=6x+4 get dy=6dx. We make a substitution and get
∫cos(6x+4)dx=61∫cos(y)dy Using a table of integrals
∫cos(x)dx=sin(x)+C where C is constant. Therefore
61∫cos(y)dy=61sin(y)+CReturning to the substitution we get
61sin(y)+C=61sin(6x+4)+C
where C is constant.
Answer. a.
61sin(6x+4)+C where C is constant.
Comments