Solution. Let y=sin(x), then dy=cos(x)dx. Make a substitution and get
∫sin(x)cos(x)dx=∫ydy
Using a table of integrals get
∫ydy=2y2+C
where C is constant. Returning to substitution get
∫sin(x)cos(x)dx=2sin2(x)+C
where C is constant.
Answer. a.
∫sin(x)cos(x)dx=2sin2(x)+C
Comments