Question #88003
1.Find the integral with respect to x ∫cos x sin xdx
a.sin^2x
-------- +c
2
b.sin2x+c
c.cos^2x
----- +c
2
d.sinx
1
Expert's answer
2019-04-16T13:54:24-0400

Solution. Let y=sin(x), then dy=cos(x)dxMake a substitution and get


sin(x)cos(x)dx=ydy\int sin(x)cos(x)dx = \int ydy

Using a table of integrals get


ydy=y22+C\int ydy= \frac {y^2} {2} + C

where C is constant. Returning to substitution get


sin(x)cos(x)dx=sin2(x)2+C\int sin(x)cos(x)dx =\frac {sin^2(x)} {2}+ C

where C is constant.

Answer. a.


sin(x)cos(x)dx=sin2(x)2+C\int sin(x)cos(x)dx = \frac {sin^2(x)} {2}+ C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS