Question #86027
For a1,......,an € R, a1<a2<....<an, show that
{n/(a1-a0)}+{(n-1)/(a2-a1)}+.......+ {1/(an- an-1)} >= summation of k=1 to n (k^2/ ak).
1
Expert's answer
2019-03-15T12:02:28-0400
For a1,,anR,a1<a2<<anFor \ a_1,\cdots, a_n \in \mathbb{R}, a_1 < a_2 <\dots < a_n

na1a0+n1a2a1++1anan1k=1nk2ak\frac {n}{a_1 - a_0} + \frac {n-1}{a_2-a_1} +\cdots + \frac {1}{a_n - a_n-1} \geq \sum_{k=1}^{n} \frac {k^2}{a_k}

After dividing both sides by right hand side


k=1nna1a0k2ak+k=1nn1a2a1k2ak++k=1n1anan1k2ak1\sum_{k=1}^{n} \frac {\frac {n}{a_1 - a_0}}{\frac {k^2}{a_k}} + \sum_{k=1}^{n} \frac{\frac {n-1}{a_2-a_1}}{\frac {k^2}{a_k} } +\cdots + \sum_{k=1}^{n} \frac {\frac {1}{a_n - a_{n-1}}}{ \frac {k^2}{a_k} } \geq 1

where


k=1nna1a0k2ak=na1a012a1+na1a022a2++na1a0n2an\sum_{k=1}^{n} \frac {\frac {n}{a_1 - a_0}}{\frac {k^2}{a_k}}= \frac {\frac {n}{a_1 - a_0}}{\frac {1^2}{a_1}} + \frac {\frac {n}{a_1 - a_0}}{\frac {2^2}{a_2}} + \dots + \frac {\frac {n}{a_1 - a_0}}{\frac {n^2}{a_n}}

k=1nn1a2a1k2ak=n1a2a112a1+n1a2a122a2++n1a2a1n2an\sum_{k=1}^{n} \frac {\frac {n-1}{a_2 - a_1}}{\frac {k^2}{a_k}}= \frac {\frac {n-1}{a_2 - a_1}}{\frac {1^2}{a_1}} + \frac {\frac {n-1}{a_2 - a_1}}{\frac {2^2}{a_2}} + \dots + \frac {\frac {n-1}{a_2 - a_1}}{\frac {n^2}{a_n}}

k=1n1anan1k2ak=1anan112a1+1anan122a2++1anan1n2an\sum_{k=1}^{n} \frac {\frac {1}{a_n - a_{n-1}}}{\frac {k^2}{a_k}}= \frac {\frac {1}{a_n - a_{n-1}}}{\frac {1^2}{a_1}} + \frac {\frac {1}{a_n - a_{n-1}}}{\frac {2^2}{a_2}} + \dots + \frac {\frac {1}{a_n - a_{n-1}}}{\frac {n^2}{a_n}}

To show that left hand side equal or bigger then 1, it's suffices to show that at least one of

 the summands bigger or equal to 1.

 One can always choose such a summand.

 Let it be :


k=1nna1a0k2ak=na1a012a1+na1a022a2++na1a0n2an\sum_{k=1}^{n} \frac {\frac {n}{a_1 - a_0}}{\frac {k^2}{a_k}}= \frac {\frac {n}{a_1 - a_0}}{\frac {1^2}{a_1}} + \frac {\frac {n}{a_1 - a_0}}{\frac {2^2}{a_2}} + \dots + \frac {\frac {n}{a_1 - a_0}}{\frac {n^2}{a_n}}

abcd=adbc\frac{\frac{a}{b}}{\frac{c}{d}}= \frac{ad}{bc}

\Downarrow

k=1nnak(a1a0)k2=na1(a1a0)12+na2(a1a0)22++nan(a1a0)n21\sum_{k=1}^{n} \frac {na_k}{(a_1 - a_0)k^2}= \frac {na_1}{(a_1 - a_0)1^2} + \frac {na_2}{(a_1 - a_0)2^2} + \dots + \frac {na_n}{(a_1 - a_0)n^2} \geq 1

And again, it's enough to show that at least one of the summands bigger or equal to 1

 for example first


na1(a1a0)121\frac {na_1}{(a_1 - a_0)1^2} \geq 1

where


n12 and a1(a1a0)    na1(a1a0)121n \geq 1^2 \ and \ a_1 \geq (a_1 - a_0) \implies \frac {na_1}{(a_1 - a_0)1^2} \geq 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS