1.
x 2 + 4 𝑥 − 5 e x − 1 > 0 x^2+4𝑥−5e^x−1>0 x 2 + 4 x − 5 e x − 1 > 0
x < − 4.252 x<-4.252 x < − 4.252 Domain: ( − ∞ , − 4.252 ) (-\infin, -4.252) ( − ∞ , − 4.252 )
2.
x + 3 y − 2 = 0 x+3y-2=0 x + 3 y − 2 = 0
y = − 1 3 x + 2 3 y=-\dfrac{1}{3}x+\dfrac{2}{3} y = − 3 1 x + 3 2 The slope of the tangent line
s l o p e = m = − 1 − 1 3 = 3 slope=m=-\dfrac{1}{-\dfrac{1}{3}}=3 s l o p e = m = − − 3 1 1 = 3
𝑓 ( 𝑥 ) = x + 2 𝑥 𝑓(𝑥)=\sqrt{x}+2𝑥 f ( x ) = x + 2 x
f ′ ( x ) = 1 2 x + 2 f'(x)=\dfrac{1}{2\sqrt{x}}+2 f ′ ( x ) = 2 x 1 + 2
s l o p e = m = 3 = 1 2 x + 2 slope=m=3=\dfrac{1}{2\sqrt{x}}+2 s l o p e = m = 3 = 2 x 1 + 2
1 2 x = 1 \dfrac{1}{2\sqrt{x}}=1 2 x 1 = 1
x = 1 4 x=\dfrac{1}{4} x = 4 1
y ( 1 4 ) = 1 4 + 2 ( 1 4 ) = 1 y(\dfrac{1}{4})=\sqrt{\dfrac{1}{4}}+2(\dfrac{1}{4})=1 y ( 4 1 ) = 4 1 + 2 ( 4 1 ) = 1
The equation of the tangent line in point-slope form is
y − 1 = 3 ( x − 1 4 ) y-1=3(x-\dfrac{1}{4}) y − 1 = 3 ( x − 4 1 ) The equation of the tangent line in slope-intercept form is
y = 3 x + 1 4 y=3x+\dfrac{1}{4} y = 3 x + 4 1
3.
Domain:( − ∞ , ∞ ) (-\infin, \infin) ( − ∞ , ∞ )
f ′ ( x ) = ( arctan ( x 2 − 4 x ) ) ′ = 2 x − 4 1 + ( x 2 − 4 x ) 2 f'(x)=(\arctan(x^2-4x))'=\dfrac{2x-4}{1+(x^2-4x)^2} f ′ ( x ) = ( arctan ( x 2 − 4 x ) ) ′ = 1 + ( x 2 − 4 x ) 2 2 x − 4
f ′ ( x ) = 0 = > 2 x − 4 1 + ( x 2 − 4 x ) 2 = 0 f'(x)=0=>\dfrac{2x-4}{1+(x^2-4x)^2}=0 f ′ ( x ) = 0 => 1 + ( x 2 − 4 x ) 2 2 x − 4 = 0
x = 2 x=2 x = 2 If x < 2 , f ′ ( x ) < 0 , f ( x ) x<2, f'(x)<0, f(x) x < 2 , f ′ ( x ) < 0 , f ( x ) decreases.
If x > 2 , f ′ ( x ) > 0 , f ( x ) x>2, f'(x)>0, f(x) x > 2 , f ′ ( x ) > 0 , f ( x ) increases.
The function f f f is monotone decreasing on ( − ∞ , 2 ) . (-\infin, 2). ( − ∞ , 2 ) .
The function f f f is monotone increasing on ( 2 , ∞ ) . (2,\infin). ( 2 , ∞ ) .
4.
∫ x 2 ( x 3 + 4 ) 2 d x \int x^2(x^3+4)^2 dx ∫ x 2 ( x 3 + 4 ) 2 d x
u = x 3 + 4 , d u = 3 x 2 d x u=x^3+4, du=3x^2dx u = x 3 + 4 , d u = 3 x 2 d x
∫ x 2 ( x 3 + 4 ) 2 d x = 1 3 ∫ u 2 d u = u 3 9 + C \int x^2(x^3+4)^2 dx=\dfrac{1}{3}\int u^2du=\dfrac{u^3}{9}+C ∫ x 2 ( x 3 + 4 ) 2 d x = 3 1 ∫ u 2 d u = 9 u 3 + C
= ( x 3 + 4 ) 3 9 + C =\dfrac{(x^3+4)^3}{9}+C = 9 ( x 3 + 4 ) 3 + C 5.
d y 2 y + 1 = − tan ( x ) d x \dfrac{dy}{2y+1}=-\tan (x)dx 2 y + 1 d y = − tan ( x ) d x Integrate
∫ d y 2 y + 1 = − ∫ tan ( x ) d x \int \dfrac{dy}{2y+1}=-\int\tan (x)dx ∫ 2 y + 1 d y = − ∫ tan ( x ) d x
∫ tan ( x ) d x = ∫ sin ( x ) cos ( x ) d x = − ln ∣ cos ( x ) ∣ + 1 2 ln C \int\tan (x)dx=\int\dfrac{\sin (x)}{\cos(x)}dx=-\ln|\cos(x)|+\dfrac{1}{2}\ln C ∫ tan ( x ) d x = ∫ cos ( x ) sin ( x ) d x = − ln ∣ cos ( x ) ∣ + 2 1 ln C
1 2 ln ∣ 2 y + 1 ∣ = ln ∣ cos ( x ) ∣ + 1 2 ln C \dfrac{1}{2}\ln|2y+1|=\ln|\cos(x)|+\dfrac{1}{2}\ln C 2 1 ln ∣2 y + 1∣ = ln ∣ cos ( x ) ∣ + 2 1 ln C
2 y + 1 = C cos 2 ( x ) 2y+1=C\cos ^2 (x) 2 y + 1 = C cos 2 ( x ) Given y ( π 4 ) = 12 y(\dfrac{\pi}{4})=12 y ( 4 π ) = 12
2 ( 12 ) + 1 = C cos 2 ( π 4 ) 2(12)+1=C\cos ^2 (\dfrac{\pi}{4}) 2 ( 12 ) + 1 = C cos 2 ( 4 π )
C = 50 C=50 C = 50 The particular solution of the differential equation
2 y + 1 = 50 cos 2 ( x ) 2y+1=50\cos ^2 (x) 2 y + 1 = 50 cos 2 ( x )
6.
2 X + A = 3 B − A X 2X+A=3B-AX 2 X + A = 3 B − A X
A = ( − 4 − 3 3 2 ) , B = ( 1 − 1 2 1 ) A=\begin{pmatrix}
-4 & -3 \\
3 & 2
\end{pmatrix}, B=\begin{pmatrix}
1 & -1 \\
2 & 1
\end{pmatrix} A = ( − 4 3 − 3 2 ) , B = ( 1 2 − 1 1 ) Let
X = ( x 11 x 12 x 21 x 22 ) X=\begin{pmatrix}
x_{11}& x_{12} \\
x_{21} & x_{22}
\end{pmatrix} X = ( x 11 x 21 x 12 x 22 ) Then
2 X = ( 2 x 11 2 x 12 2 x 21 2 x 22 ) 2X=\begin{pmatrix}
2x_{11}& 2x_{12} \\
2x_{21} & 2x_{22}
\end{pmatrix} 2 X = ( 2 x 11 2 x 21 2 x 12 2 x 22 )
A X = ( − 4 − 3 3 2 ) ( x 11 x 12 x 21 x 22 ) AX=\begin{pmatrix}
-4 & -3 \\
3 & 2
\end{pmatrix}\begin{pmatrix}
x_{11}& x_{12} \\
x_{21} & x_{22}
\end{pmatrix} A X = ( − 4 3 − 3 2 ) ( x 11 x 21 x 12 x 22 )
= ( − 4 x 11 − 3 x 21 − 4 x 12 − 3 x 22 3 x 11 + 2 x 21 3 x 12 + 2 x 22 ) =\begin{pmatrix}
-4x_{11}-3x_{21}& -4x_{12}-3x_{22} \\
3x_{11}+2x_{21} & 3x_{12}+2x_{22}
\end{pmatrix} = ( − 4 x 11 − 3 x 21 3 x 11 + 2 x 21 − 4 x 12 − 3 x 22 3 x 12 + 2 x 22 )
2 X + A X = ( − 2 x 11 − 3 x 21 − 2 x 12 − 3 x 22 3 x 11 + 4 x 21 3 x 12 + 4 x 22 ) 2X+AX=\begin{pmatrix}
-2x_{11}-3x_{21}& -2x_{12}-3x_{22} \\
3x_{11}+4x_{21} & 3x_{12}+4x_{22}
\end{pmatrix} 2 X + A X = ( − 2 x 11 − 3 x 21 3 x 11 + 4 x 21 − 2 x 12 − 3 x 22 3 x 12 + 4 x 22 )
3 B − A = ( 7 0 3 1 ) 3B-A=\begin{pmatrix}
7 & 0 \\
3 & 1
\end{pmatrix} 3 B − A = ( 7 3 0 1 )
( − 2 x 11 − 3 x 21 − 2 x 12 − 3 x 22 3 x 11 + 4 x 21 3 x 12 + 4 x 22 ) = ( 7 0 3 1 ) \begin{pmatrix}
-2x_{11}-3x_{21}& -2x_{12}-3x_{22} \\
3x_{11}+4x_{21} & 3x_{12}+4x_{22}
\end{pmatrix}=\begin{pmatrix}
7 & 0 \\
3 & 1
\end{pmatrix} ( − 2 x 11 − 3 x 21 3 x 11 + 4 x 21 − 2 x 12 − 3 x 22 3 x 12 + 4 x 22 ) = ( 7 3 0 1 )
− 2 x 11 − 3 x 21 = 7 -2x_{11}-3x_{21}=7 − 2 x 11 − 3 x 21 = 7 3 x 11 + 4 x 21 = 3 3x_{11}+4x_{21}=3 3 x 11 + 4 x 21 = 3
− 2 x 12 − 3 x 22 = 0 -2x_{12}-3x_{22}=0 − 2 x 12 − 3 x 22 = 0 3 x 12 + 4 x 22 = 1 3x_{12}+4x_{22}=1 3 x 12 + 4 x 22 = 1
x 21 = 27 x_{21}=27 x 21 = 27 − 2 x 11 − 3 x 21 = 7 -2x_{11}-3x_{21}=7 − 2 x 11 − 3 x 21 = 7
− x 22 = 2 -x_{22}=2 − x 22 = 2 3 x 12 + 4 x 22 = 1 3x_{12}+4x_{22}=1 3 x 12 + 4 x 22 = 1
x 11 = 37 , x 21 = − 27 , x 22 = − 2 , x 12 = 3 x_{11}=37, x_{21}=-27, x_{22}=-2, x_{12}=3 x 11 = 37 , x 21 = − 27 , x 22 = − 2 , x 12 = 3
X = ( 37 − 27 3 − 2 ) X=\begin{pmatrix}
37& -27 \\
3 & -2
\end{pmatrix} X = ( 37 3 − 27 − 2 )
Comments