Question #335035

An aeroplane heads due north at 500 km/h. It experiences a 80 km/h crosswind flowing in


the direction N60^°E.


(a) Find the true velocity of the aeroplane.

1
Expert's answer
2022-04-29T14:03:03-0400
v=500j\vec{v}=500\vec{j}

u=80sin60°i+80cos60°j\vec{u}=80\sin60\degree \vec{i}+80\cos60\degree\vec{j}

vres=v+u\vec{v}_{res}=\vec{v}+\vec{u}

=403i+540j=40\sqrt{3}\vec{i}+540\vec{j}

vres=(403)2+(540)2=20741(km/h)|\vec{v}_{res}|=\sqrt{(40\sqrt{3})^2+(540)^2}=20\sqrt{741}(km/h)

tanθ=403540=2327\tan \theta=\dfrac{40\sqrt{3}}{540}=\dfrac{2\sqrt{3}}{27}

θ=tan123277.3111°\theta=\tan^{-1}\dfrac{2\sqrt{3}}{27}\approx7.3111\degree

2074120\sqrt{741} km/h in the direction N(tan12327)°E.N(\tan^{-1}\dfrac{2\sqrt{3}}{27})\degree E.


544.4263544.4263 km/h in the direction N(7.31)°E.N(7.31)\degree E.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS