use Stokes theorem evaluate ∮A.dr, where A=y²i+x²j+z²k and C is boundary of the part of the plane x+y+z=1 like in the first octant
"=(2x-2y)\\bold k"
"\\bold n=\\langle1, 1, 1\\rangle"
"curl \\bold A\\cdot \\bold n=2x-2y"
"\\int_C\\bold A\\cdot d\\bold r=\\int\\int _Scurl \\bold A\\cdot d\\bold S"
"=\\int \\int_S(2x-2y)dS"
"=\\displaystyle\\int_{0}^1\\displaystyle\\int_{0}^{1-y}(2x-2y)dxdy"
"=\\displaystyle\\int_{0}^1[x^2-2xy]\\begin{matrix}\n 1-y \\\\\n 0\n\\end{matrix}dy"
"=\\displaystyle\\int_{0}^1((1-y)^2-2y(1-y))dy"
"=\\displaystyle\\int_{0}^1(1-2y+y^2-2y+2y^2)dy"
"=[y^3-2y^2+y]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=0"
"\\int_C\\bold A\\cdot d\\bold r=0"
Comments
Leave a comment