1.
x ( t , y ) = t 3 − 3 t + t y 2 x(t, y)=t^3 - 3t + ty^2 x ( t , y ) = t 3 − 3 t + t y 2
∂ x ∂ t = 3 t 2 − 3 + y 2 \dfrac{\partial x}{\partial t}=3t^2-3+y^2 ∂ t ∂ x = 3 t 2 − 3 + y 2
∂ x ∂ y = 2 y t \dfrac{\partial x}{\partial y}=2yt ∂ y ∂ x = 2 y t Find the critical point(s)
∂ x ∂ t = 0 , \dfrac{\partial x}{\partial t}=0, ∂ t ∂ x = 0 ,
∂ x ∂ y = 0 \dfrac{\partial x}{\partial y}=0 ∂ y ∂ x = 0
3 t 2 − 3 + y 2 = 0 3t^2-3+y^2=0 3 t 2 − 3 + y 2 = 0
2 y t = 0 2yt=0 2 y t = 0
t = 0 , y = − 3 t=0, y=-\sqrt{3} t = 0 , y = − 3
t = 0 , y = 3 t=0, y=\sqrt{3} t = 0 , y = 3
y = 0 , t = − 1 y=0,t=-1 y = 0 , t = − 1
y = 0 , t = 1 y=0, t=1 y = 0 , t = 1
∂ 2 x ∂ t 2 = 6 t \dfrac{\partial^2 x}{\partial t^2}=6t ∂ t 2 ∂ 2 x = 6 t
∂ 2 x ∂ t ∂ y = 2 y \dfrac{\partial^2 x}{\partial t\partial y}=2y ∂ t ∂ y ∂ 2 x = 2 y
∂ 2 x ∂ y 2 = 2 t \dfrac{\partial^2 x}{\partial y^2}=2t ∂ y 2 ∂ 2 x = 2 t
D = ∣ 6 t 2 y 2 y 2 t ∣ = 12 t 2 − 4 y 2 D=\begin{vmatrix}
6t & 2y \\
2y & 2t
\end{vmatrix}=12t^2-4y^2 D = ∣ ∣ 6 t 2 y 2 y 2 t ∣ ∣ = 12 t 2 − 4 y 2
t = 0 , y = − 3 t=0, y=-\sqrt{3} t = 0 , y = − 3
∂ 2 x ∂ t 2 ∣ t = 0 , y = − 3 = 0 \dfrac{\partial^2 x}{\partial t^2}|_{t=0, y=-\sqrt{3}}=0 ∂ t 2 ∂ 2 x ∣ t = 0 , y = − 3 = 0
D ∣ t = 0 , y = − 3 = − 12 < 0 D|_{t=0, y=-\sqrt{3}}=-12<0 D ∣ t = 0 , y = − 3 = − 12 < 0 x ( 0 , − 3 ) x(0, -\sqrt{3}) x ( 0 , − 3 ) is not a local maximum or local minimum.
t = 0 , y = 3 t=0, y=\sqrt{3} t = 0 , y = 3
∂ 2 x ∂ t 2 ∣ t = 0 , y = 3 = 0 \dfrac{\partial^2 x}{\partial t^2}|_{t=0, y=\sqrt{3}}=0 ∂ t 2 ∂ 2 x ∣ t = 0 , y = 3 = 0
D ∣ t = 0 , y = 3 = − 12 < 0 D|_{t=0, y=\sqrt{3}}=-12<0 D ∣ t = 0 , y = 3 = − 12 < 0 x ( 0 , 3 ) x(0, \sqrt{3}) x ( 0 , 3 ) is not a local maximum or local minimum.
t = − 1 , y = 0 t=-1, y=0 t = − 1 , y = 0
∂ 2 x ∂ t 2 ∣ t = − 1 , y = 0 = − 6 < 0 \dfrac{\partial^2 x}{\partial t^2}|_{t=-1, y=0}=-6<0 ∂ t 2 ∂ 2 x ∣ t = − 1 , y = 0 = − 6 < 0
D ∣ t = − 1 , y = 0 = 12 > 0 D|_{t=-1, y=0}=12>0 D ∣ t = − 1 , y = 0 = 12 > 0 x ( − 1 , 0 ) x(-1, 0) x ( − 1 , 0 ) is a local maximum.
t = 1 , y = 0 t=1, y=0 t = 1 , y = 0
∂ 2 x ∂ t 2 ∣ t = 1 , y = 0 = 6 > 0 \dfrac{\partial^2 x}{\partial t^2}|_{t=1, y=0}=6>0 ∂ t 2 ∂ 2 x ∣ t = 1 , y = 0 = 6 > 0
D ∣ t = 1 , y = 0 = 12 > 0 D|_{t=1, y=0}=12>0 D ∣ t = 1 , y = 0 = 12 > 0 x ( 1 , 0 ) x(1, 0) x ( 1 , 0 ) is a local minimum.
2.
Given
L B H = 32 = > H = 32 L B LBH=32=>H=\dfrac{32}{LB} L B H = 32 => H = L B 32
S = ( 2 L + 2 B ) H + L B S=(2L+2B)H+LB S = ( 2 L + 2 B ) H + L B Substitute
S ( L , B ) = ( 2 L + 2 B ) ( 32 L B ) + L B S(L, B)=(2L+2B)(\dfrac{32}{LB})+LB S ( L , B ) = ( 2 L + 2 B ) ( L B 32 ) + L B
= 64 B + 64 L + L B , L > 0 , B > 0 =\dfrac{64}{B}+\dfrac{64}{L}+LB, L>0, B>0 = B 64 + L 64 + L B , L > 0 , B > 0
∂ S ∂ L = − 64 L 2 + B \dfrac{\partial S}{\partial L}=-\dfrac{64}{L^2}+B ∂ L ∂ S = − L 2 64 + B
∂ S ∂ B = − 64 B 2 + L \dfrac{\partial S}{\partial B}=-\dfrac{64}{B^2}+L ∂ B ∂ S = − B 2 64 + L Find the critical point(s)
∂ S ∂ L = 0 , \dfrac{\partial S}{\partial L}=0, ∂ L ∂ S = 0 ,
∂ S ∂ B = 0 \dfrac{\partial S}{\partial B}=0 ∂ B ∂ S = 0
− 64 L 2 + B = 0 -\dfrac{64}{L^2}+B=0 − L 2 64 + B = 0
− 64 B 2 + L = 0 -\dfrac{64}{B^2}+L=0 − B 2 64 + L = 0
B L 2 = 64 = L 2 B BL^2=64=L^2B B L 2 = 64 = L 2 B
B = L = 4 B=L=4 B = L = 4
∂ 2 S ∂ L 2 = 128 L 3 \dfrac{\partial^2 S}{\partial L^2}=\dfrac{128}{L^3} ∂ L 2 ∂ 2 S = L 3 128
∂ 2 S ∂ B 2 = 128 B L 3 \dfrac{\partial^2 S}{\partial B^2}=\dfrac{128}{BL^3} ∂ B 2 ∂ 2 S = B L 3 128
∂ 2 S ∂ L ∂ B = 1 \dfrac{\partial^2 S}{\partial L\partial B}=1 ∂ L ∂ B ∂ 2 S = 1
D = ∣ 128 / L 3 1 1 128 / B 3 ∣ = 16384 / ( L B ) 3 − 1 D=\begin{vmatrix}
128/L^3 & 1 \\
1 & 128/B^3
\end{vmatrix}=16384/(LB)^3-1 D = ∣ ∣ 128/ L 3 1 1 128/ B 3 ∣ ∣ = 16384/ ( L B ) 3 − 1
∂ 2 S ∂ L 2 ∣ L = 4 , B = 4 = 2 > 0 \dfrac{\partial^2 S}{\partial L^2}|_{L=4, B=4}=2>0 ∂ L 2 ∂ 2 S ∣ L = 4 , B = 4 = 2 > 0
D ∣ L = 4 , B = 4 = 4 − 1 = 3 > 0 D|_{L=4, B=4}=4-1=3>0 D ∣ L = 4 , B = 4 = 4 − 1 = 3 > 0 S ( 4 , 4 ) S(4, 4) S ( 4 , 4 ) is a local minimum.Since the function S ( L , B ) S(L,B) S ( L , B ) has the only extreme value for L > 0 , B > 0 , L>0, B>0, L > 0 , B > 0 , then S(4, 4) is the absolute minimm for L > 0 , B > 0. L>0, B>0. L > 0 , B > 0.
H = 32 4 ( 4 ) = 2 H=\dfrac{32}{4(4)}=2 H = 4 ( 4 ) 32 = 2 The dimensions of the box for least material are
L e n g t h × B r e a d t h × H e i g h t Length\times Breadth\times Height L e n g t h × B re a d t h × He i g h t
= 4 × 4 × 2 =4\times4\times 2 = 4 × 4 × 2
Comments