Question #275690

1.Determine the nature of the stationary value of x= t^3 - 3t + ty^2

2. A rectangle box whose value is 32 is open at the top,if the surface area is 2(L+B)H + LB where LBH are Length,Breadth and Height Respectively

i.Find the Dimension of the box that may require list material

ii.investigate weather the dimension found requires List material.


1
Expert's answer
2021-12-06T16:00:28-0500

1.


x(t,y)=t33t+ty2x(t, y)=t^3 - 3t + ty^2


xt=3t23+y2\dfrac{\partial x}{\partial t}=3t^2-3+y^2

xy=2yt\dfrac{\partial x}{\partial y}=2yt

Find the critical point(s)


xt=0,\dfrac{\partial x}{\partial t}=0,

xy=0\dfrac{\partial x}{\partial y}=0


3t23+y2=03t^2-3+y^2=0

2yt=02yt=0

t=0,y=3t=0, y=-\sqrt{3}

t=0,y=3t=0, y=\sqrt{3}

y=0,t=1y=0,t=-1

y=0,t=1y=0, t=1

2xt2=6t\dfrac{\partial^2 x}{\partial t^2}=6t

2xty=2y\dfrac{\partial^2 x}{\partial t\partial y}=2y

2xy2=2t\dfrac{\partial^2 x}{\partial y^2}=2t

D=6t2y2y2t=12t24y2D=\begin{vmatrix} 6t & 2y \\ 2y & 2t \end{vmatrix}=12t^2-4y^2

t=0,y=3t=0, y=-\sqrt{3}


2xt2t=0,y=3=0\dfrac{\partial^2 x}{\partial t^2}|_{t=0, y=-\sqrt{3}}=0

Dt=0,y=3=12<0D|_{t=0, y=-\sqrt{3}}=-12<0

x(0,3)x(0, -\sqrt{3}) is not a local maximum or local minimum.



t=0,y=3t=0, y=\sqrt{3}

2xt2t=0,y=3=0\dfrac{\partial^2 x}{\partial t^2}|_{t=0, y=\sqrt{3}}=0

Dt=0,y=3=12<0D|_{t=0, y=\sqrt{3}}=-12<0

x(0,3)x(0, \sqrt{3}) is not a local maximum or local minimum.



t=1,y=0t=-1, y=0

2xt2t=1,y=0=6<0\dfrac{\partial^2 x}{\partial t^2}|_{t=-1, y=0}=-6<0

Dt=1,y=0=12>0D|_{t=-1, y=0}=12>0

x(1,0)x(-1, 0) is a local maximum.



t=1,y=0t=1, y=0

2xt2t=1,y=0=6>0\dfrac{\partial^2 x}{\partial t^2}|_{t=1, y=0}=6>0

Dt=1,y=0=12>0D|_{t=1, y=0}=12>0

x(1,0)x(1, 0) is a local minimum.


2.

Given

LBH=32=>H=32LBLBH=32=>H=\dfrac{32}{LB}

S=(2L+2B)H+LBS=(2L+2B)H+LB

Substitute


S(L,B)=(2L+2B)(32LB)+LBS(L, B)=(2L+2B)(\dfrac{32}{LB})+LB

=64B+64L+LB,L>0,B>0=\dfrac{64}{B}+\dfrac{64}{L}+LB, L>0, B>0


SL=64L2+B\dfrac{\partial S}{\partial L}=-\dfrac{64}{L^2}+B

SB=64B2+L\dfrac{\partial S}{\partial B}=-\dfrac{64}{B^2}+L

Find the critical point(s)


SL=0,\dfrac{\partial S}{\partial L}=0,

SB=0\dfrac{\partial S}{\partial B}=0


64L2+B=0-\dfrac{64}{L^2}+B=0

64B2+L=0-\dfrac{64}{B^2}+L=0

BL2=64=L2BBL^2=64=L^2B

B=L=4B=L=4

2SL2=128L3\dfrac{\partial^2 S}{\partial L^2}=\dfrac{128}{L^3}

2SB2=128BL3\dfrac{\partial^2 S}{\partial B^2}=\dfrac{128}{BL^3}

2SLB=1\dfrac{\partial^2 S}{\partial L\partial B}=1

D=128/L311128/B3=16384/(LB)31D=\begin{vmatrix} 128/L^3 & 1 \\ 1 & 128/B^3 \end{vmatrix}=16384/(LB)^3-1

2SL2L=4,B=4=2>0\dfrac{\partial^2 S}{\partial L^2}|_{L=4, B=4}=2>0

DL=4,B=4=41=3>0D|_{L=4, B=4}=4-1=3>0

S(4,4)S(4, 4) is a local minimum.Since the function S(L,B)S(L,B) has the only extreme value for L>0,B>0,L>0, B>0, then S(4, 4) is the absolute minimm for L>0,B>0.L>0, B>0.


H=324(4)=2H=\dfrac{32}{4(4)}=2

The dimensions of the box for least material are

Length×Breadth×HeightLength\times Breadth\times Height

=4×4×2=4\times4\times 2

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS