1.
x(t,y)=t3−3t+ty2
∂t∂x=3t2−3+y2
∂y∂x=2yt Find the critical point(s)
∂t∂x=0,
∂y∂x=0
3t2−3+y2=0
2yt=0
t=0,y=−3
t=0,y=3
y=0,t=−1
y=0,t=1
∂t2∂2x=6t
∂t∂y∂2x=2y
∂y2∂2x=2t
D=∣∣6t2y2y2t∣∣=12t2−4y2
t=0,y=−3
∂t2∂2x∣t=0,y=−3=0
D∣t=0,y=−3=−12<0 x(0,−3) is not a local maximum or local minimum.
t=0,y=3
∂t2∂2x∣t=0,y=3=0
D∣t=0,y=3=−12<0 x(0,3) is not a local maximum or local minimum.
t=−1,y=0
∂t2∂2x∣t=−1,y=0=−6<0
D∣t=−1,y=0=12>0 x(−1,0) is a local maximum.
t=1,y=0
∂t2∂2x∣t=1,y=0=6>0
D∣t=1,y=0=12>0 x(1,0) is a local minimum.
2.
Given
LBH=32=>H=LB32
S=(2L+2B)H+LB Substitute
S(L,B)=(2L+2B)(LB32)+LB
=B64+L64+LB,L>0,B>0
∂L∂S=−L264+B
∂B∂S=−B264+L Find the critical point(s)
∂L∂S=0,
∂B∂S=0
−L264+B=0
−B264+L=0
BL2=64=L2B
B=L=4
∂L2∂2S=L3128
∂B2∂2S=BL3128
∂L∂B∂2S=1
D=∣∣128/L311128/B3∣∣=16384/(LB)3−1
∂L2∂2S∣L=4,B=4=2>0
D∣L=4,B=4=4−1=3>0 S(4,4) is a local minimum.Since the function S(L,B) has the only extreme value for L>0,B>0, then S(4, 4) is the absolute minimm for L>0,B>0.
H=4(4)32=2 The dimensions of the box for least material are
Length×Breadth×Height
=4×4×2
Comments