Question #275115

A thin rod of length, πΏ = 40 π‘π‘š, was made from a material with a thermal 

diffusivity, π‘˜ = 2.5 π‘π‘š2⁄𝑠 . The temperature distribution in terms of the time, 

𝑑 and the position, π‘₯ is denoted by π‘‡(𝑑, π‘₯). The following initial and boundary 

conditions are considered:

𝑇(0, π‘₯) = 𝑓(π‘₯) 

𝑇(𝑑, 0) = 𝑓(0) 

𝑇(𝑑, 40) = 𝑓(40) where π‘“(π‘₯) has the following piecewise function form 

𝑓(π‘₯) = { 𝑔(π‘₯), 0 ≀ π‘₯ < π‘Ž 

β„Ž(π‘₯), π‘Ž ≀ π‘₯ ≀ 40 

.

The functions π‘”(π‘₯) and β„Ž(π‘₯) are not constant and π‘“(π‘₯) satisfies the following 

condition, 

𝑓(40) > 𝑓(0) > 0 or π‘“(0) > 𝑓(40) > 0.

By using a suitable function for π‘“(π‘₯) and, the values of βˆ†π‘₯ = 4 π‘π‘š and βˆ†π‘‘ = 

4 𝑠, consider TWO (2) finite-difference methods to compute the temperature 

distribution π‘‡(𝑑, π‘₯) over the time interval [0, 8].


0
Expert's answer

Answer in progress...

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS