The force R is the resultant of the forces P1, P2, and P3 acting on the rectangular plate. Find P1 and P2 if ๐ = 40 kN and ๐3 = 20 kN.
"\\vec P_2=\\bigg(P_2\\cos[\\tan^{-1}(\\dfrac{400}{300})], -P_2\\sin[\\tan^{-1}(\\dfrac{400}{300})]\\bigg)"
"\\vec P_3=\\bigg(-P_3, 0\\bigg)"
"\\vec R=\\bigg(R\\cos[30\\degree], R\\sin[30\\degree]\\bigg)"
"\\vec R=\\vec P_1+\\vec P_2+\\vec P_3"
"\\cos[\\tan^{-1}(\\dfrac{600}{300})]=\\cos[\\tan^{-1}(2)]=\\dfrac{1}{\\sqrt{5}}"
"\\sin[\\tan^{-1}(\\dfrac{600}{300})]=\\sin[\\tan^{-1}(2)]=\\dfrac{2}{\\sqrt{5}}"
"\\cos[\\tan^{-1}(\\dfrac{400}{300})]=\\cos[\\tan^{-1}(\\dfrac{4}{3})]=\\dfrac{3}{5}"
"\\sin[\\tan^{-1}(\\dfrac{400}{300})]=\\sin[\\tan^{-1}(\\dfrac{4}{3})]=\\dfrac{4}{5}"
"\\cos[30\\degree]=\\dfrac{\\sqrt{3}}{2}, \\sin[30\\degree]=\\dfrac{1}{2}"
"40(\\dfrac{\\sqrt{3}}{2})=\\dfrac{1}{\\sqrt{5}}P_1+\\dfrac{3}{5}P_2-20"
"40(\\dfrac{1}{2})=\\dfrac{2}{\\sqrt{5}}P_1-\\dfrac{4}{5}P_2+0"
"\\dfrac{1}{\\sqrt{5}}P_1=10+\\dfrac{2}{5}P_2"
"20\\sqrt{3}+20-\\dfrac{3}{5}P_2=10+\\dfrac{2}{5}P_2"
"P_2=20\\sqrt{3}+30"
"\\dfrac{1}{\\sqrt{5}}P_1=10+\\dfrac{2}{5}(20\\sqrt{3}+30)"
"P_1=8\\sqrt{15}+12\\sqrt{5}"
"P_1=4\\sqrt{5}(2\\sqrt{3}+3) \\ kN"
"P_2=10(2\\sqrt{3}+3)\\ kN"
Comments
Leave a comment