Minimize z=200x+500y
subject to the constraints
x+2y≥103x+4y≤24x≥0,y≥0 Find the point(s) of intersection
y=−21x+5
y=−43x+6 x=0:
y=−43(0)+6,Point A(0,6)
y=−21(0)+5,Point C(0,5)
−21x+5=−43x+6
41x=1
x=4,y=3,Point B(4,3)
Point A(0,6):z(0,6)=200(0)+500(6)=3000
Point B(4,3):z(4,3)=200(4)+500(3)=2300
Point C(05):z(0,5)=200(0)+500(5)=2500
The function z has a minimum with value of 2300 at (4,3).
Comments