Question #248092

Solve the following linear programming graphically [5] Minimize: 𝑧 = 200𝑥 + 500𝑦 Subject to the constraints: 𝑥 + 2𝑦 ≥ 10 3𝑥 + 4𝑦 ≤ 24 𝑥 ≥ 0; 𝑦 ≥ 


1
Expert's answer
2021-10-08T09:40:48-0400

Minimize 𝑧=200𝑥+500𝑦𝑧 = 200𝑥 + 500𝑦

subject to the constraints


x+2y103𝑥+4𝑦24x0,y0\begin{matrix} x+2y\geq10 \\ 3𝑥 + 4𝑦 \leq 24 \\ x\geq0, y\geq0 \end{matrix}

Find the point(s) of intersection


y=12x+5y=-\dfrac{1}{2}x+5

y=34x+6y=-\dfrac{3}{4}x+6

x=0:x=0:


y=34(0)+6,Point A(0,6)y=-\dfrac{3}{4}(0)+6, Point\ A(0,6)

y=12(0)+5,Point C(0,5)y=-\dfrac{1}{2}(0)+5, Point\ C(0,5)

12x+5=34x+6-\dfrac{1}{2}x+5=-\dfrac{3}{4}x+6

14x=1\dfrac{1}{4}x=1

x=4,y=3,Point B(4,3)x=4, y=3,Point\ B(4,3)


Point A(0,6):𝑧(0,6)=200(0)+500(6)=3000A(0,6):𝑧(0,6) = 200(0) + 500(6)=3000


Point B(4,3):𝑧(4,3)=200(4)+500(3)=2300B(4,3):𝑧(4,3) = 200(4) + 500(3)=2300


Point C(05):𝑧(0,5)=200(0)+500(5)=2500C(05):𝑧(0,5) = 200(0) + 500(5)=2500


The function zz has a minimum with value of 23002300 at (4,3).(4,3).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS