Question #244535
Let
A=2x^2i−3yzj+xz^2k
and
ϕ=2z−x^3y
, find
A×▽ϕ
at point (1,-1,1).
1
Expert's answer
2021-09-30T14:20:08-0400
ϕ=3x2yix3j+2k\nabla \phi=-3x^2yi-x^3j+2k

A×ϕ=ijk2x23yzxz23x2yx32A\times \nabla \phi=\begin{vmatrix} i & j & k \\ 2x^2 & -3yz & xz^2 \\ -3x^2y & -x^3 & 2 \end{vmatrix}

=i3yzxz2x32j2x2xz23x2y2+k2x23yz3x2yx3=i\begin{vmatrix} -3yz & xz^2 \\ -x^3 & 2 \end{vmatrix}-j\begin{vmatrix} 2x^2 & xz^2 \\ -3x^2y & 2 \end{vmatrix}+k\begin{vmatrix} 2x^2 & -3yz \\ -3x^2y & -x^3 \end{vmatrix}

=(6yz+x4z2)i+(4x23x3yz2)j=(-6yz+x^4z^2)i+(-4x^2-3x^3yz^2)j

+(2x59x2y2z)k+(-2x^5-9x^2y^2z)k

(1,1,1)(1,-1,1)


A×ϕ(1,1,1)=(6+1)i+(4+3)j+(29)kA\times \nabla \phi|_{(1, -1, 1)}=(6+1)i+(-4+3)j+(-2-9)k

=7ij11k=7i-j-11k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS