Let
A=2x^2i−3yzj+xz^2k
and
ϕ=2z−x^3y
, find
A×▽ϕ
at point (1,-1,1).
1
2021-09-30T14:20:08-0400
∇ϕ=−3x2yi−x3j+2k
A×∇ϕ=∣∣i2x2−3x2yj−3yz−x3kxz22∣∣
=i∣∣−3yz−x3xz22∣∣−j∣∣2x2−3x2yxz22∣∣+k∣∣2x2−3x2y−3yz−x3∣∣
=(−6yz+x4z2)i+(−4x2−3x3yz2)j
+(−2x5−9x2y2z)k (1,−1,1)
A×∇ϕ∣(1,−1,1)=(6+1)i+(−4+3)j+(−2−9)k
=7i−j−11k
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Learn more about our help with Assignments:
Math
Comments