Question #243848

A civil engineer found that the durability d

d

 of the road, she is laying depends on two functions y

1

y1

 and y

2

y2

 as follows: d

=

y

2

2

+

4

y

1

21

d=y22+4y1−21

. Functions y

1

y1

 and y

2

y2

 depend on the amount of plastic (x

x

) mixed in bitumen, and their variations are linear functions of x

x

. Let y

1

=

8

y1=8

 and y

2

=

3

y2=3

 for x

=


x=0

 and y

1

=


y1=0

 and y

2

=

7

y2=7

 for x

=

7

x=7

. Find the durability of the road (upto 2 decimal points), if the amount of plastic is such that both the functions are equal.


1
Expert's answer
2021-09-29T15:46:04-0400

Let y1=ax+b,y2=mx+n.y_1=ax+b, y_2=mx+n.


y1(0)=b=8,y_1(0)=b=8,

y2(0)=n=3y_2(0)=n=3

y1(7)=a(7)+8=0=>a=87y_1(7)=a(7)+8=0=>a=-\dfrac{8}{7}

y2(7)=m(7)+3=7=>m=47y_2(7)=m(7)+3=7=>m=\dfrac{4}{7}

y1(x)=87x+8y_1(x)=-\dfrac{8}{7}x+8

y2(x)=47x+3y_2(x)=\dfrac{4}{7}x+3

If y1=y2,y_1=y_2, then


87x+8=47x+3-\dfrac{8}{7}x+8=\dfrac{4}{7}x+3

127x=5\dfrac{12}{7}x=5

x=3512x=\dfrac{35}{12}

y1=87(3512)+8=143=y2y_1=-\dfrac{8}{7}(\dfrac{35}{12})+8=\dfrac{14}{3}=y_2

d=(143)2+4(143)21=175919.44d=(\dfrac{14}{3})^2+4(\dfrac{14}{3})−21=\dfrac{175}{9}\approx19.44

d=19.44d=19.44


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS