Question #228608

L -1 {k / s2+k2} =sinkt

1
Expert's answer
2021-09-01T11:50:30-0400
L(sin(kt))=0etssin(kt)dtL(\sin(kt))=\displaystyle\int_{0}^{\infin}e^{-ts}\sin(kt)dt

etssin(kt)dt=1setssin(kt)\int e^{-ts}\sin(kt)dt=-\dfrac{1}{s}e^{-ts}\sin(kt)

+ksetscos(kt)dt+\dfrac{k}{s}\int e^{-ts}\cos(kt)dt

=1setssin(kt)ks2etscos(kt)=-\dfrac{1}{s}e^{-ts}\sin(kt)-\dfrac{k}{s^2}e^{-ts}\cos(kt)

k2s2etssin(kt)dt-\dfrac{k^2}{s^2}\int e^{-ts}\sin(kt)dt

Then


(s2+k2)etssin(kt)dt=ets(ssin(kt)+kcos(kt)+C1(s^2+k^2)\int e^{-ts}\sin(kt)dt=-e^{-ts}(s\sin(kt)+k\cos(kt)+C_1

etssin(kt)dt=ets(ssin(kt)+kcos(kt)s2+k2+C\int e^{-ts}\sin(kt)dt=-\dfrac{e^{-ts}(s\sin(kt)+k\cos(kt)}{s^2+k^2}+C

L(sin(kt))=0etssin(kt)dtL(\sin(kt))=\displaystyle\int_{0}^{\infin}e^{-ts}\sin(kt)dt

=limA[ets(ssin(kt)+kcos(kt)s2+k2]A0=\lim\limits_{A\to \infin}[-\dfrac{e^{-ts}(s\sin(kt)+k\cos(kt)}{s^2+k^2}]\begin{matrix} A \\ 0 \end{matrix}

=0+ks2+k2=0+\dfrac{k}{s^2+k^2}

L(sin(kt))=ks2+k2L(\sin(kt))=\dfrac{k}{s^2+k^2}

L1(ks2+k2)=sin(kt)L^{-1}(\dfrac{k}{s^2+k^2})=\sin(kt)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS