L -1 {k / s2+k2} =sinkt
"\\int e^{-ts}\\sin(kt)dt=-\\dfrac{1}{s}e^{-ts}\\sin(kt)"
"+\\dfrac{k}{s}\\int e^{-ts}\\cos(kt)dt"
"=-\\dfrac{1}{s}e^{-ts}\\sin(kt)-\\dfrac{k}{s^2}e^{-ts}\\cos(kt)"
"-\\dfrac{k^2}{s^2}\\int e^{-ts}\\sin(kt)dt"
Then
"\\int e^{-ts}\\sin(kt)dt=-\\dfrac{e^{-ts}(s\\sin(kt)+k\\cos(kt)}{s^2+k^2}+C"
"L(\\sin(kt))=\\displaystyle\\int_{0}^{\\infin}e^{-ts}\\sin(kt)dt"
"=\\lim\\limits_{A\\to \\infin}[-\\dfrac{e^{-ts}(s\\sin(kt)+k\\cos(kt)}{s^2+k^2}]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}"
"=0+\\dfrac{k}{s^2+k^2}"
"L(\\sin(kt))=\\dfrac{k}{s^2+k^2}"
"L^{-1}(\\dfrac{k}{s^2+k^2})=\\sin(kt)"
Comments
Leave a comment