Using Newtonβs 2nd law gives:
mdt2d2xβ=βmk(dtdxβ)2βmg
dtdVβ=βkV2βg
dtdVβ=dxdVββ
dtdxβ=VdxdVβ
VdxdVβ=βkV2βg
kV2+gVdVβ=βdx
β«kV2+gVdVβ=ββ«dx
β«kV2+gVdVβ z=kV2+g,dz=2kVdV
VdV=21βdz
β«kV2+gVdVβ=β«2kzdzβ=2k1βlnβ£zβ£+C1β
=2k1βln(kV2+g)+C1β
2k1βln(kV2+g)=βx+21βC2β
2kx=βln(kV2+g)+kC2β
t=0:0=βln(ku02β+g)+kC2β
=>kC2β=ln(ku02β+g)
2kx=ln(kV2+gku02β+gβ) If k=Vt2βgβ
Vt2β2gxβ=ln(V2+Vt2βu02β+Vt2ββ)
Comments