Solution. Find the derivative of the function f(x) using the rules of differentiation
f′(x)=3x2−6x−9. Equate the derivative to zero and find the roots of the equation
3x2−6x−9=0x2−2x−3=0.
D=(−2)−4×1×(−3)=4+12=16x1=22−16=22−4=−1
x2=22+16=22+4=3 Points x = -1 and x = 3 divide the domain into three intervals. Let us find the sign of the derivative on each of the intervals.
For
x∈(−∞;−1)f′(−2)=3×(−2)2−6×(−2)−9=12+12−9=15>0. Since the derivative f'(x)>o the function f(x) increases on the specified interval.
For
x∈(−1;3)
f′(−2)=3×02−6×0−9=0−0−9=−9<0. Since the derivative f'(x)<o the function f(x) decreases on the specified interval.
For
x∈(3;+∞)
f′(4)=3×42−6×4−9=48−24−9=15>0. Since the derivative f'(x)>o the function f(x) increases on the specified interval.
As result get at the point x=-1
f(−1)=(−1)3−3×(−1)2−9×(−1)−8=−1−3+9−8=−3 the maximum of the function f(x);
at the point x=3
f(3)=33−3×32−9×3−8=27−27+27−8=−35 the minimum of the function f(x).
Answer. Point x=-1 f(-1)=-3 is the maximum of the function f(x); point x=3 f(-1)=-35 is the minimum of the function f(x).
Comments