Solution. Find the derivative of the function f(x) using the rules of differentiation
f ′ ( x ) = 3 x 2 − 6 x − 9. f'(x)=3x^2-6x-9. f ′ ( x ) = 3 x 2 − 6 x − 9. Equate the derivative to zero and find the roots of the equation
3 x 2 − 6 x − 9 = 0 3x^2-6x-9=0 3 x 2 − 6 x − 9 = 0 x 2 − 2 x − 3 = 0. x^2-2x-3=0. x 2 − 2 x − 3 = 0.
D = ( − 2 ) − 4 × 1 × ( − 3 ) = 4 + 12 = 16 D=(-2)^-4\times1\times(-3)=4+12=16 D = ( − 2 ) − 4 × 1 × ( − 3 ) = 4 + 12 = 16 x 1 = 2 − 16 2 = 2 − 4 2 = − 1 x_1=\frac{2-\sqrt{16}}{2}=\frac{2-4}{2}=-1 x 1 = 2 2 − 16 = 2 2 − 4 = − 1
x 2 = 2 + 16 2 = 2 + 4 2 = 3 x_2=\frac{2+\sqrt{16}}{2}=\frac{2+4}{2}=3 x 2 = 2 2 + 16 = 2 2 + 4 = 3 Points x = -1 and x = 3 divide the domain into three intervals. Let us find the sign of the derivative on each of the intervals.
For
x ∈ ( − ∞ ; − 1 ) x\in(-\infin;-1) x ∈ ( − ∞ ; − 1 ) f ′ ( − 2 ) = 3 × ( − 2 ) 2 − 6 × ( − 2 ) − 9 = 12 + 12 − 9 = 15 > 0. f'(-2)=3\times(-2)^2-6\times(-2)-9=12+12-9=15>0. f ′ ( − 2 ) = 3 × ( − 2 ) 2 − 6 × ( − 2 ) − 9 = 12 + 12 − 9 = 15 > 0. Since the derivative f'(x)>o the function f(x) increases on the specified interval.
For
x ∈ ( − 1 ; 3 ) x\in(-1;3) x ∈ ( − 1 ; 3 )
f ′ ( − 2 ) = 3 × 0 2 − 6 × 0 − 9 = 0 − 0 − 9 = − 9 < 0. f'(-2)=3\times0^2-6\times0-9=0-0-9=-9<0. f ′ ( − 2 ) = 3 × 0 2 − 6 × 0 − 9 = 0 − 0 − 9 = − 9 < 0. Since the derivative f'(x)<o the function f(x) decreases on the specified interval.
For
x ∈ ( 3 ; + ∞ ) x\in(3;+\infin) x ∈ ( 3 ; + ∞ )
f ′ ( 4 ) = 3 × 4 2 − 6 × 4 − 9 = 48 − 24 − 9 = 15 > 0. f'(4)=3\times4^2-6\times4-9=48-24-9=15>0. f ′ ( 4 ) = 3 × 4 2 − 6 × 4 − 9 = 48 − 24 − 9 = 15 > 0. Since the derivative f'(x)>o the function f(x) increases on the specified interval.
As result get at the point x=-1
f ( − 1 ) = ( − 1 ) 3 − 3 × ( − 1 ) 2 − 9 × ( − 1 ) − 8 = − 1 − 3 + 9 − 8 = − 3 f(-1)=(-1)^3-3\times(-1)^2-9\times(-1)-8=-1-3+9-8=-3 f ( − 1 ) = ( − 1 ) 3 − 3 × ( − 1 ) 2 − 9 × ( − 1 ) − 8 = − 1 − 3 + 9 − 8 = − 3 the maximum of the function f(x);
at the point x=3
f ( 3 ) = 3 3 − 3 × 3 2 − 9 × 3 − 8 = 27 − 27 + 27 − 8 = − 35 f(3)=3^3-3\times3^2-9\times3-8=27-27+27-8=-35 f ( 3 ) = 3 3 − 3 × 3 2 − 9 × 3 − 8 = 27 − 27 + 27 − 8 = − 35 the minimum of the function f(x).
Answer. Point x=-1 f(-1)=-3 is the maximum of the function f(x); point x=3 f(-1)=-35 is the minimum of the function f(x).
Comments