Question #187525

2.Find the maximum and minimum points for the function f (x) =x3 - 3x2 - 9x - 8 (Differentiation)

1
Expert's answer
2021-05-07T10:31:14-0400

Solution. Find the derivative of the function f(x) using the rules of differentiation


f(x)=3x26x9.f'(x)=3x^2-6x-9.

Equate the derivative to zero and find the roots of the equation


3x26x9=03x^2-6x-9=0x22x3=0.x^2-2x-3=0.

D=(2)4×1×(3)=4+12=16D=(-2)^-4\times1\times(-3)=4+12=16x1=2162=242=1x_1=\frac{2-\sqrt{16}}{2}=\frac{2-4}{2}=-1

x2=2+162=2+42=3x_2=\frac{2+\sqrt{16}}{2}=\frac{2+4}{2}=3

Points x = -1 and x = 3 divide the domain into three intervals. Let us find the sign of the derivative on each of the intervals.

For


x(;1)x\in(-\infin;-1)f(2)=3×(2)26×(2)9=12+129=15>0.f'(-2)=3\times(-2)^2-6\times(-2)-9=12+12-9=15>0.

Since the derivative f'(x)>o the function f(x) increases on the specified interval.

For


x(1;3)x\in(-1;3)

f(2)=3×026×09=009=9<0.f'(-2)=3\times0^2-6\times0-9=0-0-9=-9<0.

Since the derivative f'(x)<o the function f(x) decreases on the specified interval.

For


x(3;+)x\in(3;+\infin)

f(4)=3×426×49=48249=15>0.f'(4)=3\times4^2-6\times4-9=48-24-9=15>0.

Since the derivative f'(x)>o the function f(x) increases on the specified interval.

As result get at the point x=-1


f(1)=(1)33×(1)29×(1)8=13+98=3f(-1)=(-1)^3-3\times(-1)^2-9\times(-1)-8=-1-3+9-8=-3

the maximum of the function f(x);

at the point x=3


f(3)=333×329×38=2727+278=35f(3)=3^3-3\times3^2-9\times3-8=27-27+27-8=-35

the minimum of the function f(x).

Answer. Point x=-1 f(-1)=-3 is the maximum of the function f(x); point x=3 f(-1)=-35 is the minimum of the function f(x).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS