Question #179513

i. find lim𝑥→2 𝑥^ 2−3𝑥 +2 / 𝑥 ^2−4


ii. Where are is the function 𝑓(𝑥) = 1 2𝑥 ^2−6𝑥+4 continuous?


iii. Given that given 𝑌 = tan−1 𝑥 show that 𝑑𝑦 /𝑑𝑥 = 1 1+𝑥 ^2 



iv. Prove using the first principle that the derivative of sin 𝑥 is cos 𝑥 and that the derivative of 𝑐𝑜𝑠𝑥 is – 𝑠𝑖𝑛x


v. Differentiate sin 𝑦 − 𝑥 2𝑦 3 − 𝑐𝑜𝑠𝑥 = 3y


vi. lim𝑥→1 𝑥^2+𝑥 3−5𝑥+3/ 𝑥^3+2𝑥^2+7𝑥+4



vii. lim𝑥→∞ 2𝑥/ 3𝑥^6+𝑥+4


1
Expert's answer
2021-04-15T06:31:35-0400

i.

limx2x23x+2x24=limx2(x1)(x2)(x2)(x+2)\lim\limits_{x\to 2}\dfrac{x^2-3x+2}{x^2-4}=\lim\limits_{x\to 2}\dfrac{(x-1)(x-2)}{(x-2)(x+2)}

=limx2x1x+2=212+2=14=\lim\limits_{x\to 2}\dfrac{x-1}{x+2}=\dfrac{2-1}{2+2}=\dfrac{1}{4}

ii. The function f(x)=12x26x+4f(x)=12x^2-6x+4 is continuous for all xRx\in \R as polynomial.


iii. Let y=tan1(x).y=\tan^{-1}(x). Then tany=x,π2<y<π2\tan y=x, -\dfrac{\pi}{2}<y<\dfrac{\pi}{2}



(tan1(x))=1(tany)=11cos2y(\tan^{-1}(x))'=\dfrac{1}{(\tan y)'}=\dfrac{1}{\dfrac{1}{\cos^2y}}

=11+tan2y=11+x2=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}

iv.


(sinx)=limh0sin(x+h)sinxh(\sin x)'=\lim\limits_{h\to 0}\dfrac{\sin(x+h)-\sin x}{h}

=limh0sinxcosh+cosxsinhsinxh=\lim\limits_{h\to 0}\dfrac{\sin x\cos h+\cos x \sin h-\sin x}{h}

=limh0sinx(cosh1)+cosxsinhh=\lim\limits_{h\to 0}\dfrac{\sin x(\cos h-1)+\cos x \sin h}{h}

=sinxlimh0cosh1h+cosxlimh0sinhh=\sin x\lim\limits_{h\to 0}\dfrac{\cos h-1}{h}+\cos x\lim\limits_{h\to 0}\dfrac{\sin h}{h}

=sinx(0)+cosx(1)=cosx=\sin x(0)+\cos x(1)=\cos x



(cosx)=limh0cos(x+h)cosxh(\cos x)'=\lim\limits_{h\to 0}\dfrac{\cos(x+h)-\cos x}{h}

=limh0cosxcoshsinxsinhcosxh=\lim\limits_{h\to 0}\dfrac{\cos x\cos h-\sin x \sin h-\cos x}{h}

=limh0cosx(cosh1)sinxsinhh=\lim\limits_{h\to 0}\dfrac{\cos x(\cos h-1)-\sin x \sin h}{h}

=cosxlimh0cosh1hsinxlimh0sinhh=\cos x\lim\limits_{h\to 0}\dfrac{\cos h-1}{h}-\sin x\lim\limits_{h\to 0}\dfrac{\sin h}{h}

=cosx(0)sinx(1)=sinx=\cos x(0)-\sin x(1)=-\sin x

v.


ddx(sinyx2y3cosx)=ddx(3y)\dfrac{d}{dx}(\sin y-x^2y^3-\cos x)=\dfrac{d}{dx}(3y)

Use the Chain Rule


cosydydx2xy33x2y2dydx+sinx=3dydx\cos y \dfrac{dy}{dx}-2xy^3-3x^2 y^2 \dfrac{dy}{dx}+\sin x=3\dfrac{dy}{dx}

Solve for dydx\dfrac{dy}{dx}


dydx=2xy3+sinx3+3x2y2cosy\dfrac{dy}{dx}=\dfrac{-2xy^3+\sin x}{3+3x^2y^2-\cos y}


vi.

limx1x2+x35x+3x3+2x2+7x+4=12+135(1)+313+2(1)2+7(1)+4\lim\limits_{x\to 1}\dfrac{x^2+x^3-5x+3}{x^3+2x^2+7x+4}=\dfrac{1^2+1^3-5(1)+3}{1^3+2(1)^2+7(1)+4}

=0=0

vii.


limx2x3x6+x+4=limx2xx63x6x6+xx6+4x6\lim\limits_{x\to \infin}\dfrac{2x}{3x^6+x+4}=\lim\limits_{x\to \infin}\dfrac{\dfrac{2x}{x^6}}{\dfrac{3x^6}{x^6}+\dfrac{x}{x^6}+\dfrac{4}{x^6}}

=limx2x53+1x5+4x6=03+0+0=0=\lim\limits_{x\to \infin}\dfrac{\dfrac{2}{x^5}}{3+\dfrac{1}{x^5}+\dfrac{4}{x^6}}=\dfrac{0}{3+0+0}=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS