Question #179505

a.. Differentiate the function ๐‘ฆ = (3๐‘ฅ^2+2) ^2โˆš6๐‘ฅ+2 / ๐‘ฅ ^3+1


b. Let P and Q be points on the curve ๐‘ฆ = ๐‘ฅ 2 โˆ’ 2๐‘ฅ while x = 2 and x = 2 + h respectively. Express the gradient of pq in terms of h and hence find the gradient of the curve ๐‘ฆ = ๐‘ฅ 2 โˆ’ 2๐‘ฅ at x= 2


c. Find the gradient of the curve ๐‘ฆ = 1/ ๐‘ฅโˆ’1 at the point (2,1)


A straight line ๐‘ฆ = โˆ’๐‘ฅ + 4 cuts the parabola with equation ๐‘ฆ = 16 โˆ’ ๐‘ฅ 2 at the points A and B.


a) Find the coordinates of A and B


b) Calculate the distance between the points A and B


c) Find the equation of the tangents at A and B, and hence determine where the tangents meet.


d) The line ยต is perpendicular to the line A at the point A and B meet. Give its equation


1
Expert's answer
2021-04-15T06:50:15-0400

1.

a.


yโ€ฒ=((3x2+2)26x+2x3+1)โ€ฒy'=((3x^2+2)^2\sqrt{6}x+\dfrac{2}{x^3+1})'

=126x2(3x2+2)+6(3x2+2)2โˆ’6x2(x3+1)2=12\sqrt {6}x^2(3x^2+2)+\sqrt{6}(3x^2+2)^2-\dfrac{6x^2}{(x^3+1)^2}

b.


grad=(2+h)2โˆ’2(2+h)โˆ’22+2(2)2+hโˆ’2grad=\dfrac{(2+h)^2-2(2+h)-2^2+2(2)}{2+h-2}

=4+4h+h2โˆ’4โˆ’2hโˆ’4+4h=2+h=\dfrac{4+4h+h^2-4-2h-4+4}{h}=2+h


limโกhโ†’0(2+h)2โˆ’2(2+h)โˆ’22+2(2)2+hโˆ’2\lim\limits_{h\to 0}\dfrac{(2+h)^2-2(2+h)-2^2+2(2)}{2+h-2}

=limโกhโ†’0(2+h)=2+0=2=\lim\limits_{h\to 0}(2+h)=2+0=2

Gradient of the curve y=x2โˆ’2xy=x^2-2x at x=2x=2 is 2.


c.


yโ€ฒ=(1xโˆ’1)โ€ฒ=โˆ’1(xโˆ’1)2y'=(\dfrac{1}{x-1})'=-\dfrac{1}{(x-1)^2}

gradโˆฃ(2,1)=โˆ’1(2โˆ’1)2=โˆ’1grad|_{(2, 1)}=-\dfrac{1}{(2-1)^2}=-1


2.

a) Find the coordinates of A and B


โˆ’x+4=16โˆ’x2-x+4=16-x^2

x2โˆ’xโˆ’12=0x^2-x-12=0

(x+3)(xโˆ’4)=0(x+3)(x-4)=0

x1=โˆ’3,y1=โˆ’(โˆ’3)+4=7x_1=-3, y_1=-(-3)+4=7


x2=4,y2=โˆ’4+4=0x_2=4, y_2=-4+4=0


A(โˆ’3,7),B(4,0)A(-3, 7), B(4, 0)


b)


dAB=(4โˆ’(โˆ’3))2+(0โˆ’7)2=27d_{AB}=\sqrt{(4-(-3))^2+(0-7)^2}=2\sqrt{7}

c)


(16โˆ’x2)โ€ฒ=โˆ’2x(16-x^2)'=-2x

A(โˆ’3,7)A(-3, 7)


yโ€ฒ(โˆ’3)=โˆ’2(โˆ’3)=6y'(-3)=-2(-3)=6

yโˆ’7=6(xโˆ’(โˆ’3))y-7=6(x-(-3))

The equation of the tangent line

y=6x+25y=6x+25

B(4,0)B(4, 0)


yโ€ฒ(4)=โˆ’2(4)=โˆ’8y'(4)=-2(4)=-8

yโˆ’0=โˆ’8(xโˆ’4)y-0=-8(x-4)

The equation of the tangent line

y=โˆ’8x+32y=-8x+32


6x+25=โˆ’8x+326x+25=-8x+32

14x=714x=7

x=12x=\dfrac{1}{2}

y=โˆ’8(12)+32=28y=-8(\dfrac{1}{2})+32=28

The tangents meet at the point (12,28)(\dfrac{1}{2}, 28)


d)

The line ยต is perpendicular to the line A is perpendicular to the line y=โˆ’x+4y=-x+4


slope=1slope=1

y=x+by=x+b

The line ยต passes through the point (12,28)(\dfrac{1}{2}, 28)


28=12+b=>b=55228=\dfrac{1}{2}+b=>b=\dfrac{55}{2}

The equation of the line ยต is y=x+552.y=x+\dfrac{55}{2}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS